Title: On the Unique Games Conjecture
1On the Unique Games Conjecture
- Subhash Khot
- Georgia Inst. Of Technology.
- At FOCS 2005
2NP-hard Problems
- Vertex Cover
- MAX-3SAT
- Bin-Packing
- Set Cover
- Clique
- MAX-CUT
- ..
- ..
3Approximability Algorithms
- A C-approximation algorithm computes (C gt 1),
- for problem instance I , solution A(I) s.t.
- Minimization problems
- A(I) ? C ? OPT(I)
- Maximization problems
- A(I) ? OPT(I) / C
4Some Known Approximation Algorithms
- Vertex Cover 2 - approx.
- MAX-3SAT 8/7 - approx. Random
assignment. -
- Packing/Scheduling (1?) approx. ? ? gt 0
(PTAS) - Set Cover ln n approx.
- Clique n/log n Boppana
Halldorsson92 -
- Many more , ref. Vazirani01
5PCP Theorem
- B85, GMR89, BFL91, LFKN92, S92,
PY91 - FGLSS91, AS92 ALMSS92
- Theorem It is NP-hard to tell whether
a MAX-3SAT - instance is
- satisfiable (i.e. OPT
1) or - no assignment satisfies
more than 99 clauses - (i.e.
OPT ? 0.99). - i.e. MAX-3SAT is 1/0.99 1.01 hard to
approximate. - i.e. MAX-3SAT and MAX-SNP-complete problems
PY91 - have no PTAS.
6Approximability Towards Tight Hardness Results
- Hastad96 Clique n1-?
- Hastad97 MAX-3SAT 8/7 - ?
- Feige98 Set Cover (1- ?) ln n
Dinur05 Combinatorial Proof of PCP Theorem !
7Open Problems in Approximability
- Vertex Cover
- (1.36 vs. 2) DinurSafra02
- Coloring 3-colorable graphs
- (5 vs. n3/14)
- KhannaLinialSafra93, BlumKarger97
- Sparsest Cut
- (1 vs. (logn)1/2) AroraRaoVazirani04
- Max Cut
- (17/16 vs 1/0.878 )
- Håstad97, GoemansWilliamson94
- ..
8Unique Games Conjecture Khot02
- Implies these hardness results
- Vertex Cover 2- ?
KR03 - Coloring 3-colorable ?(1)
DMR05 - graphs (variant of UGC)
- MAX-CUT 1/0.878.. - ?
KKMO04 - Sparsest Cut,
- Multi-cut
KV05, -
?(1) CKKRS04 - Min-2SAT-Deletion
K02, CKKRS04
9Unique Games Conjecture
- Led to
- MOO05 Majority Is Stablest Theorem
- KV05 Negative type metrics do
not embed - into L1 with O(1)
distortion. -
- Optimal
integrality gap for MAX-CUT - SDP with Triangle
Inequality. -
10Integrality Gap Definition
- Given Maximization Problem
- Specific SDP relaxation.
- For every problem instance G,
- SDP(G) ? OPT(G)
- Integrality Gap Max G SDP(G) / OPT(G)
- Constructing gap instance negative result.
11Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
12Unique Games Conjecture
- A maximization problem called Unique Game is
hard to approximate. - Gap-preserving reductions from
- Unique Game ?
- Hardness results for Vertex Cover, MAX-CUT,
Graph-Coloring, ..
13Example of Unique Game
- OPT max fraction of equations that
can - be satisfied by any
assignment. -
- x1 x3 2
(mod k) - 3 x5 - x2 -1
(mod k) - x2 5 x1 0
(mod k) -
UGC ? For large k, it is NP-hard to
tell whether OPT ? 99
or OPT ?
1
142-Prover-1-Round Game (Constraint Satisfaction
Problem )
variables
constraints ?
152-Prover-1-Round Game (Constraint Satisfaction
Problem )
variables
k labels Here k4
constraints ?
162-Prover-1-Round Game (Constraint Satisfaction
Problem )
variables
k labels Here k4
Constraints Bipartite graphs or Relations ?
? k ? k
172-Prover-1-Round Game (Constraint Satisfaction
Problem )
Find a labeling that satisfies max
constraints
variables
k labels Here k4
OPT(G) 7/7
18Hardness of Finding OPT(G)
- Given a 2P1R game G, how hard
- is it to find OPT(G) ?
-
- PCP Theorem Razs Parallel Repetition Theorem
-
- For every ?, there is integer k(?),
s.t. - it is NP-hard to tell whether a 2P1R
- game with k k(?) labels has
- OPT 1 or OPT ? ?
In fact k 1/poly(?)
19Reductions from 2P1R Game
- Almost all known hardness results
- (e.g. Clique, MAX-3SAT, Set Cover, SVP,
. ) - are reductions from 2P1R games.
- Many special cases of 2P1R games are known
to be hard, e.g. Multipartite graphs, - Expander graphs,
- Smoothness property, .
What about unique games ?
20Unique Game 2P1R Game
with Permutations
variable
k labels Here k4
21Unique Game 2P1R Game
with Permutations
variable
k labels Here k4
Permutations or matchings ? k ? k
22Unique Game 2P1R Game
with Permutations
Find a labeling that satisfies max
constraints
OPT(G) 6/7
23Unique Games
- Considered before
- Feige Lovasz92 Parallel Repetition of
UG - reduces OPT(G).
- How hard is approximating OPT(G)
- for a unique game G ?
- Observation Easy to decide whether
- OPT(G) 1.
24MAX-CUT is Special Case of Unique Game
- Vertices Binary variables x, y, z, w, .
- Edges Equations x y 1 (mod 2)
- Hastad97
- NP-hard to tell whether
- OPT(MAX-CUT) ? 17/21
- or OPT(MAX-CUT) ? 16/21
25Unique Games Conjecture
- For any ?, ?, there is integer k(?, ?), s.t.
- it is NP-hard to tell whether a Unique
- Game with k k(?, ?) labels has
- OPT ? 1- ?
- or OPT ? ?
- i.e. Gap-Unique Game (1- ? , ?)
- is NP-hard.
26Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
27Case Study MAX-CUT
- Given a graph, find a cut that maximizes
- fraction of edges cut.
- Random cut 2-approximation.
- GW94 SDP-relaxation and rounding.
- min 0 lt ? lt 1 ? / (arccos
(1-2?) / ? ) - 1/0.878 approximation.
- KKMO04 Assuming UGC, MAX-CUT is
- 1/0.878 - ? hard to
approximate.
28Reduction to MAX-CUT
- Unique Game Graph H
- Completeness
- OPT(UG) gt 1-o(1) ? ? ? - o(1)
cut. - Soundness
- OPT(UG) lt o(1) ? No cut
with - size arccos
(1-2?) / ? o(1) - Hardness factor ? / (arccos (1-2?) / ? ) -
o(1) - Choose best ? to get 1/0.878 (
GW94)
29Reduction from Unique Game
Gadget constructed via Fourier theorem
Connecting gadgets
via Unique Game instance DMR05 UGC
reduces the analysis of the
entire construction to the analysis
of the gadget.
Gadget Basic gadget ---gt Bipartite
gadget ---gt Bipartite gadget with permutation
30Basic Gadget
- A graph on 0,1 k with specific
properties - (e.g. cuts, vertex covers, colorability)
-
x 011
k labels
0,1 k
Y 110
31Basic Gadget MAX-CUT
- Weighted graph, total edge weight 1.
- Picking random edge
- x ?R 0,1 k
- y lt-- flip every co-ordinate
of x with - probability ? (? ?
0.8)
x
32MAX-CUT Gadget Co-ordinate Cut Along
Dimension i
Fraction of edges cut Pr(x,y) xi ? yi
? Observation These are the maximum cuts.
33Bipartite Gadget
- A graph on 0,1 k ? 0,1 k (double cover
of basic -
gadget)
x 011
y 110
34Cuts in Bipartite Gadget
0,1 k
0,1 k
Matching co-ordinate cuts have size ?
35Bipartite Gadget with Permutation ? k -gt
k
- Co-ordinates in second hypercube permuted via
?.
Example ? reversal of co-ordinates.
? (y) 011
36Reduction from Unique Game
37Instance H of MAX-CUT
Bipartite Gadget via ?
38Proving Completeness
(Completeness) OPT(UG) gt 1-o(1)
? H has ? - o(1) cut.
39Completeness OPT(UG) ? 1-o(1)
label 1
Labels 1,2,3
label 2
label 3
label 2
label 1
label 1
label 3
40 Completeness OPT(UG) ? 1-o(1)
0,1 k
Vertices
Edges
Hypercubes are cut along dimensions
labels. MAX-CUT ?? ? - o(1)
?
41Proving Soundness
(Soundness) OPT(UG) lt o(1)
? H has no cut of
size arccos (1-2?) / ?
o(1)
42MAX-CUT Gadget
- Cuts Boolean functions f 0,1 k ?
0,1 - Compare boolean functions
- that depend only on single co-ordinate
vs - where every co-ordinate has negligible
- influence (i.e. non-junta functions)
-
f(x1 x2 .. xk) xi
Influence (i, f) Prx f(x) ? f(xei)
f(x1 x2 .. xk) MAJORITY
43Gadget Non-junta Cuts
- How large can non-junta cuts be ?
- i.e. cuts with all influences
negligible ? -
- Random Cut ½
- Majority Cut arccos (1-2?) / ?
gt ½ -
- MOO05 Majority Is Stablest (Best)
- Any cut slightly
better than - Majority Cut must
have - influential
co-ordinate.
44Non-junta Cuts in Bipartite Gadget
0,1 k
0,1 k
MOO05 Any special cut with value
arccos (1-2?) / ? ? must
define a matching pair
of influential co-ordinates.
45Non-junta Cuts in Bipartite Gadget
0,1 k
0,1 k
f 0,1 k --gt 0, 1
g 0,1 k --gt 0, 1
cut gt arccos (1-2?) / ? ? ?
? i Infl (i, f), Infl (i, g) gt ?(1)
46Instance H of MAX-CUT
Bipartite Gadget via ?
47Proving Soundness
- Assume arccos (1-2?) / ? ? cut exists.
- On ?/2 fraction of constraints, the
- bipartite gadget has arccos (1-2?) / ?
?/2 cut. -
- ? matching pair of labels on this
constraint. - This is impossible since OPT(UG) o(1).
- Done !
-
48Other Hardness Results
- Vertex Cover
- Friedguts Theorem
- Every boolean function with low average
sensitivity is a junta. - Sparsest Cut, Min-2SAT Deletion KahnKalaiLinial
Every balanced boolean function has a -
co-ordinate with influence log n/n. - Bourgains Theorem (inspired by
Hastad-Sudans 2-bit Long Code test) - Every boolean function with low noise
sensitivity is a junta. - Coloring 3-Colorable MOO05 inspired.
- Graphs
49Basic Paradigm by BGS95, Hastad97
- ? Hardness results for Clique, MAX-3SAT,
. -
- Instead of Unique Games, use reduction from
- general 2P1R Games (PCP Theorem Raz).
- Hypercube Bits in the Long Code Bellare
-
Goldreich Sudan95 - PCPs with 3 or more queries (testing Long
Code). - Not enough to construct 2-query PCPs.
-
50Why UGC and not 2P1R Games?
- Power in simplicity.
-
- Obvious way of encoding a permutation
- constraint.
- Basic Gadget ----gt Bipartite Gadget with
- permutation.
51Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
52I Hope UGC is True
- Implies all the right hardness
- results in a unifying way.
- Neat applications of Fourier theorems
- Bourgain02, KKL88, Friedgut98, MOO05
-
- Surprising application to theory of metric
- embeddings and SDP-relaxations KV05.
-
- Mere coincidence ?
53Supporting Evidence
- Feige Reichman04
- Gap-Unique Game (C?, ?) is NP-hard.
- i.e. For every constant C, there is ?
s.t. - it is NP-hard to tell if a UG has
- OPT gt C ? or OPT lt ?.
- However C ? --gt 0 as ? --gt 0.
-
54Supporting Evidence
- Khot Vishnoi05
- SDP relaxation for Unique Game
- has integrality gap (1-? , ?).
-
55Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
56Disproving UGC means ..
- For small enough (constant) ?,
- given a UG with optimum 1- ?,
- algorithm that finds a labeling satisfying
- (say) 50 constraints.
57Algorithmic Results
- Algorithm that finds a labeling
- satisfying f(?, k, n) fraction of
constraints. - Khot02 1- ?1/5 k2
- Trevisan05 1- ?1/3 log1/3 n
- Gupta Talwar05 1- ? log n
- CMM05 1/k? , 1- ?1/2 log1/2 k
-
- None of these disproves UGC.
58Quadratic Integer Program For Unique Game Feige
Lovasz92
variable
u1 , u2 , , uk ? 0,1
u
? k ? k
v
k labels
v1 , v2 , , vk ? 0,1
vi 1 if Label(v) i 0 otherwise
59Quadratic Program for Unique Games
- Constraints on edge-set E.
- Maximize ? ? ui vp(i)
- (u, v) ? E
i1,2,..,k - ? u ? i ? k, ui ? 0,1
- ? u ? ui2 1
- i
- ?u ? i ? j , ui uj 0
60SDP Relaxation for Unique Games
- Maximize ? ? ?ui,
vp(i) ? - (u, v)
? E i1,2,..,k - ? u ? i ? k, ui is a vector.
- ? u ? ui 2 ? 1
- i1,2,..,k
- ? u ? i?j ? k, ?ui, uj? 0
61Feige Lovasz92
- OPT(G) ? SDP(G) ? 1.
- If OPT(G) lt 1, then SDP(G) lt 1.
- SDP(Gm) (SDP(G))m
- Parallel Repetition Theorem for UG
-
- OPT(G) lt 1 ? OPT(Gm) ? 0
-
62Khot02 Rounding Algorithm
r
r
Random r
u
v
- Label(u) 2, Label(v) 2
- Pr Label(u) Label(v) gt 1 -
?1/5 k2 - Labeling satisfies 1 - ?1/5 k2 fraction
- of constraints in expected sense.
63CMM05 Algorithm
- Labeling that satisfies 1/k? fraction
- of constraints. (Optimal KV05)
All i s.t. ui is close to r are
taken as candidate labels to u. Pick one
of them at random.
64Trevisan05 Algorithm
- Given a unique game with optimum
- 1- 1/log n, algorithm finds a labeling
- that satisfies 50 of constraints.
- Limit on hardness factors achievable
- via UGC (e.g. loglog n for Sparsest Cut).
65Trevisan05 Algorithm
Variables and constraints
- Leighton Rao88 Delete a few constraints
and - remaining graph has
connected - components of low
diameter.
66Trevisan05 Algorithm
- A good algorithm for graphs with low
- diameter.
67Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
68Already Covered Lets move on .
69Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
70KV05 Integrality Gaps for
SDP-relaxations
- MAX-CUT
- Sparsest Cut
- Unique Game
- Gaps hold for SDPs with Triangle Inequality.
71Integer Program for MAX-CUT
- Given G(V,E)
- Maximize ¼ ? vi - vj 2
- (i,
j) ? E - ? i, vi ? -1,1
-
- Triangle Inequality (Optional) ? i,
j , k, - vi - vj 2 vj - vk 2 ?? vi
- v k2
72Goemans-Williamsons SDP Relaxation for MAX-CUT
- Maximize ¼ ? vi - vj
2 -
(i, j) ? E - ? i, vi ? Rn, vi 1
- Triangle Inequality (Optional) ? i, j
, k, - vi - vj 2 vj - vk 2 ??
vi - v k2
73Integrality Gap for MAX-CUT
- Goemans Williamson94
- Integrality gap ? 1/0.878..
- Karloff99 Feige Schetchman 01
- Integrality gap ? 1/0.878.. - ?
- SDP solution does not satisfy Triangle
Inequality. - Does Triangle Inequality make the SDP
tighter ? -
- NO if Unique Games Conj. is true !
-
74Integrality Gap for Unique Games SDP
SDP(G) 1-o(1)
Unique Game G with OPT(G) o(1)
75Integrality Gap for MAX-CUT with Triangle
Inequality
OPT(G) o(1)
PCP Reduction
No large cut
Good SDP solution
? u1 ? u2 ? u3 ? uk-1 ?
uk
-1,1k
76Overview of the talk
- The UGC
- Hardness of Approximation Results
- I hope UGC is true
- Attempts to Disprove Algorithms
- Connections/applications
- Fourier Analysis
- Integrality Gaps
- Metric Embeddings
77Metrics and Embeddings
- Metric is a distance function on n such that
- d(i, j) d(j, k) ? d(i, k).
- Metric d embeds into metric ? with
- distortion ? ? 1 if
- ? i, j d(i, j) ? ? (i, j) ? ? d(i, j).
78Negative Type Metrics
- Given a set of vectors satisfying
Triangle Inequality - ? i, j , k,
- vi - vj 2 vj - vk 2 ??
vi - v k2 -
- d(i, j) vi - vj 2 defines
a metric. - These are called negative type metrics.
- L1 ? NEG ? METRICS
79NEG vs L1 Question
- Goemans, Linial 95
- Conjecture NEG metrics embed into L1
- with O(1)
distortion.
O(1) Integrality Gap O(1) Approximation
Linial London Rabinovich94 Aumann
Rabani98
Chawla Krauthgamer Kumar Rabani Sivakumar
05 KV05 ?(1) hardness result
Unique Games Conjecture
Sparsest Cut
80NEG vs L1 Lower Bound
- ?(loglog n) integrality gap for
Sparsest - Cut SDP. KhotVishnoi05,
KrauthgamerRabani05 - ? A negative type metric that needs
- distortion ?(loglog n) to embed into
L1.
81Open Problems
- (Dis)Prove Unique Games Conjecture.
- Prove hardness results bypassing UGC.
- NEG vs L1 , Close the gap.
- ?(log log n) vs ?(?log n loglog n)
- Arora Lee
Naor04
82Open Problems
- Prove hardness of Min-Deletion version
- of Unique Games. (log n approx.
GT05) - Integrality gaps with k-gonal inequalities.
- Is hypercube (Long Code) necessary ?
-
-
83Open Problems
- More hardness results, integrality gaps,
- embedding lower bounds, Fourier Analysis,
-
-
Samorodnitsky Trevisan05 Gowers
Uniformity, Influence of Variables, and
PCPs. UGC ? Boolean k-CSP is hard to
approximate within 2k- log k
Independent Set on
degree D graphs is hard to
approximate within D/poly(log
D).
84Open Problems in Approximability
- Traveling Salesperson
- Steiner Tree
- Max Acyclic Subgraph, Feedback Arc Set
- Bin-packing (additive approximation)
-
- Recent progress on Edge Disjoint Paths
- Network
Congestion - Shortest
Vector Problem - Asymmetric
k-center (log n) - Group
Steiner Tree (log2 n) - Hypergraph
Vertex Cover -
-
85Linear Unique Games
- System of linear equations mod k.
- x1 x3 2
- 3 x5 - x2 -1
- x2 5 x1 0
-
KKMO04 UGC ? UGC in the special case of
linear
equations mod k.
86Variations of Conjecture
- 2-to-1 Conjecture K02
-
- ?-Conjecture DMR05
- ? NP-hard to color 3-colorable graphs
- with O(1) colors.
-
? ? k ? k
? ? k ? k