Title: fusie
1The seven impossibilities of fusion power
2(No Transcript)
3(No Transcript)
4(No Transcript)
5Thermal insulation as good as styrofoam
61960 1970 1980 1990 2000
Ohmic heating power coupled to confining field
heating resolution control modelling
12
temperature (keV)
stored energy
0
total heating power
plasma radius
71960 1970 1980 1990 2000
Additional heating decouple heating confining B
heating resolution control modelling
?
12
temperature (keV)
stored energy
Ohmic
W
0
total heating power
plasma radius
81960 1970 1980 1990 2000
1982 ASDEX discovery of higher confinement mode.
heating resolution control modelling
?
12
temperature (keV)
stored energy
Ohmic
W
Additional heating
0
total heating power
plasma radius
91960 1970 1980 1990 2000
90ties development of internal transport
barriers.
heating resolution control modelling
?
12
transport barrier
H
H
temperature (keV)
stored energy
Ohmic
L
L
W
Additional heating
0
total heating power
plasma radius
10simulation Erik Min (FOM)
11 Gyro code Jeff Candy (GA)
12(No Transcript)
13(No Transcript)
14The seven impossibilities of fusion power
OK
ITER
ITER
15Materials you could put on the sun
16Alcator C-Mod (MIT)
17Scrape-off layer 2 cm thick Power density 1
GW/m2
18- How to reduce 1 GW/m2 to a tolerable value?
- geometry of divertor
- radiate 90 of the power
- detach the plasma (Tlt10 eV)
JET
19- Plasma facing materials issues
- Erosion
- Redeposition
- Melting
- Tritium retention
- Choice of materials Carbon, Tungsten, Berylium
20- Plasma facing materials issues
- Erosion
- Redeposition
- Melting
- Tritium retention
- Choice of materials Carbon, Tungsten, Beryllium.
- Additional constraint neutron fluence
- activation
- swelling
- reduction of heat conductivity
21(No Transcript)
22(No Transcript)
23(No Transcript)
24- Sheath
- Electron mobility ? plasma charges positive.
- Bohm criterium ? n.cs
- cs sound speed ? Te0.5
- Sheath potential ? few x Te
- Te determines flux and impact energy!
- Heat flux q ? 8 x ? x Te
25Physical sputtering (Impact energy gt 20-30
eV) vs chemical erosion.
26carbon deposits in TEXTOR (FZ-Julich)
50 micron
27High-power linear plasma generators at FOM
Rijnhuizen operational
Pilot-PSI under construction Magnum-PSI
(Poster van Eck/Koppers)
28Plasma-Surface interaction
29(No Transcript)
30Plasma-Surface interaction
31Magnum-PSI
32(No Transcript)
33Neutron fluence
34Material issues in fusion
Neutron fluence Heat flux Plasma environment
Reliability Replaceability Compatibility with
plasma
35Permanent
5-6 year
2 year
Magnet
Coolant manifold
Blanket
Vessel
Cold shield
Divertor
(Power Plant Conceptual Study)
36Material development parallels with fission
200
fusion power plant
radiation damage (dpa)
Gen II Fission
ITER
0
0 Temperature (C) 1200
37Lifetime of fusion reactor wall
7 year
316 SS
Ti-mod 316 SS
Cr steels
Limited due to void swelling, Fusion reactor 30
dpa/y
0 year
38(No Transcript)
39IFMIF - International Fusion Materials
Irradiation Facility
40Waste?
Comparable to ashes of coal plant ? Acceptable
41Material development
aerospace
fission
superconducting magnets
fusion materials
lithography
inertial fusion
42Material issues in fusion
Plasma-facing material Structural
material Magnets Joints Windows Insulators Fibers
43Magnets gt 25 of ITER cost
6 PF coils 240 ton draad
18 TF coils 420 ton draad
6 CS coils 120 ton draad
44Superconducting high-field magnets Research at
Twente University
45(No Transcript)
46Fuel cycle, the tritium must be bred
47(No Transcript)
48For a breeding ratio of 1.1, a tritium has to go
round the plant 1000 times without being trapped
Breeder unit
Pb17-Li inlet
Plasma
Pb17-Li outlet
First wall
Liquid-Lead breeding concept
49The seven impossibilities of fusion power
OK
ITER
ITER
IFMIF
ITER
ITER
ITER