Nessun titolo diapositiva - PowerPoint PPT Presentation

About This Presentation
Title:

Nessun titolo diapositiva

Description:

Stochastic methodology: Monte Carlo (C.W. Johnson et al. ... The commutator yields: n; ?n | [H, B ph] | n-1; ?n-1 = (ep- eh) n; ?n | B ph | n-1; ?n-1 ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 70
Provided by: francesco77
Category:

less

Transcript and Presenter's Notes

Title: Nessun titolo diapositiva


1
New (iterative) methods for solving the nuclear
eigenvalue problem Pisa 05
2
An importance sampling algorithm for large scale
shell model calculations F. Andreozzi N. Lo
Iudice A. Porrino.
3
Currently adopted methods
  • Stochastic methodology Monte Carlo (C.W. Johnson
    et al. PRL 92), suitable for ground state. Minus
    sign problem.
  • Direct Diagonalization Lanczos (see G.H. Golub
    and C.F. Van Loan Matrix Computations 96).
    Critical point Sizes of the matrix.
  • In between Quantum MC (M. Honma et al. PRL 95).
    MC to select the relevant basis states. Problems
    Redundancy, symmetries broken by the stochastic
    procedure.

4
  • Diagonalization algorithm
  • (A. Andreozzi, A. Porrino, and N.Lo Iudice J.
    Phys. A 02)Iterative generation of an
    eigenspace
  • A ? Symmetric matrix representing a
    self-adjoint operator in an orthonormal basis
  • 1 gt , 2 gt , , Ngt
  • A ? aij lt i  j gt
  • Lowest eigenvalue and eigenvector

5
a11 a12 a13 a14 ..
a1N a21 a22
a23 a24 .. a2N a31 a32 a33
a34 .. a3N a41 a42 a43
a44 .. a4N ..
aN1 .. aNN
6
  ?1 a11 f1 gt 1 gt basis 1 gt,
2 gt
Diagonalize the matrix
 
?2 , f2 gt
k1(2) 1 gt k2(2) 2 gt
7
Updated basis f2 gt, 3 gt Compute
b3 lt f2 Â 3 gt
k1(2) a13 k2(2) a23

Diagonalize the matrix
 


?3 , f3 gt S ki(3) i gt



i 1, 3
8
Updated basis fN-1 gt, N gt Compute bN
lt fN-1 Â N gt
Diagonalize
the matrix  
?N ?
E(1) , fN gt ?(1) gt ? ki(N) i
gt



i 1,
N End first iteration loop
9
First step of the second iteration
Def. f 1(2) gt ?(1) gt ?1(2)
E(1)
Compute b1 lt f1(2) Â 1 gt
the states f1(2) gt, 1gt are not
linearly independent
Generalized eigenvalue problem  
det ( - ?
) 0

10
E(1) , ?(1) E(2) , ?(2)

THEOREM If the sequence E(i) converges ,
then E(i) E (eigenvalue of
the matrix A) ?(i) ?
(eigenvector of the matrix A)
11
Simultaneous determination of v eigensolutions
The structure of the algorithm unchanged
12
?1 0 . 0 b11 .... b1j
0 ?2 . 0
b21 b2j . .
0 0 .. ?v bv1 .
bvj b11 .... bv1 a11 ..
a1j b12 bv2 a21 .. a2j
.
b1j . bvj aj1 .... ajj
13
  • Easy implementation
  • Variational foundation
  • Robust
  • Convergence to the extremal eigenvalues
  • Numerically stable and ghost-free solutions
  • Orthogonality of the computed eigenvectors
  • Fast O( N2) operations

c
14
IMPORTANCE SAMPLING ? gt S ci
i gt i
1,Nlocalization property ? only m ( N )
ci important diagonalization algorithm
gives quite accurate solutions already in the
first approximation loop
15
Sampling procedure (F. Andreozzi, N. L.
A. Porrino, J. Phys. G 03)given e aij ?
? v diag (?i) (i,j 1, , v)
for j v1 , N diagonalize Aj
bj b1j , , bvj
?v bj bjT ajj
16
  • select the v lowest eigenvalues
  • ?1 , , ?v if S i 1,v ?i -
    ?i gt e accept the j th state

    end loop
  • requires ? N ? ( v 1)3 operations

17
Importance sampling reduces by a factor
N / Nsampled the number of operations The
effectiveness of the reduction depends on the
localization properties of the wave
function Increase of the localization
through the use of a correlated basis ?
model space partitioning
18
Numerical Applications
  • Semimagic nuclei 108Sn
  • NZ 48Cr
  • Ngt Z 133Xe

19

108Sn
1h11/2 3s1/2
2d3/2 1g7/2 2d5/2
Realistic effective interaction deduced from
Bonn A potential . Jp 2 N 17467
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
scaling with n (number of sampled states)
? (n) a b (N/n) exp(-c N/n)
e (n) (d/n2) exp(-c N/n) it allows for
high precision extrapolation n ? N
26
Heuristic argument
  • consistency
  • e(n) ? d? / dn
  • from the sampling condition (one target
    state) ?? Sj ??j Sj bj2 / ( ajj - ?)

27
In the convergence region
  • ajj - ? ? ann - ? ? n
  • bj2 lt?j-1 H jgt2 (?j-1 ?i ci
    igt)
  • small and random for j lt n
  • zero for jgt
    n
  • bj2 ? exp (- j/n)

28
  • ?? ? b (N/n) exp(-c N/n)
  • e(n) ? d? / dn
  • ? (d/n2) exp(-c N/n)

29
Conclusions
  • The algorithm is simple, robust and has a
    variational foundation
  • Once endowed with the importance sampling,
  • a) it keeps the extent of space truncation under
    strict control
  • b) it allows for extrapolation to exact
    eigensolutions
  • It is very promising for heavy nuclei
  • It may be applied to systems others than nuclei
    (molecules, metal clusters, quantum dots etc.)

30
Nuclear Eigenvalue problem in a microscopic
multiphonon spaceIterative equation of motion
method
  • Naples(Andreozzi, Lo Iudice, Porrino)
  • Prague (Knapp, Kvasil)
  • collaboration

31
Preliminary remarks
  • Standard Shell model is exact and complete within
    a given model space.
  • Often the model space is spanned by ?N 0 h?
  • Thus it does not include the high-energy
    configurations building up the collective states.
  • TDA or RPA act in a more restricted but more
    selective space (p-h or 2qp configurations up to
    n h?) and therefore are in general more suitable
    for collective excitations. They, however, do not
    account for anharmonic effects.
  • A multiphonon space is needed for describing
    anharmonicity
  • Problem with multiphonon space
  • Antisymmetry
    Redundancy
  • Proposed way out Equation of motion method

32
Eigenvalue problem Formulation
  • Goal Solving
  • H a gt Ea a gt
  • in a multiphonon space spanned by
  • 0 gt, 1, ?1 gt, 2, ?2 gt, . n, ?n gt
  • where
  • n, ?n gt ?1 ?2 ..?n gt
  • ?i gt Sph C
    ph(?i ) Bph 0gt
  • Sph Cph(?i ) ap
    ah 0gt

33
  • lt n ?n H, Bph n-1 ?n-1 gt
  • S? lt n ?n H n ? gt lt n ? Bph
    n-1 ?n-1 gt -
  • S? lt n ?n Bph n-1 ? gt lt n-1 ? H
    n-1 ?n-1 gt
  • lt n ?n H n ? gt E?n d?n?
  • lt n-1 ? H n-1 ?n-1 gt E?n-1 d?n-1?

Amplitude
  • lt n ?n H, Bph n-1 ?n-1 gt
  • (E?n - E?n-1) lt n ?n Bph n-1 ?n-1
    gt.

34
  • The commutator yields
  • lt n ?n H, Bph n-1 ?n-1 gt
  • (ep- eh) lt n ?n Bph n-1 ?n-1 gt
  • Sph Gp h h p lt n ?n Bph n-1 ?n-1
    gt
  • S Gpppp lt n ?n Bph Bpp
    n-1 ?n-1 gt
  • S
    Gphhp lt n ?n Bph Bhh) n-1
    ?n-1 gt
  • S Gph ph lt n ?n Bph Bpp
    n-1 ?n-1 gt )
  • S
    Ghhhh lt n ?n Bph Bhh) n-1
    ?n-1 gt

Amplitudes
35
Linearization
Amplitudes
lt n ?n Bph Bpp n-1 ?n-1 gt
lt n ?n Bph Bhh) n-1 ?n-1
gt
lt n ?n Bph n-1 ?gt lt
n-1 ?Bpp n-1 ?n-1 gt
ÃŽ S ? n-1 ? gtlt n-1 ?
lt n ?n Bph n-1 ?gt lt
n-1 ?Bhh n-1 ?n-1 gt
ÃŽ S ? n-1 ? gtlt n-1 ?
36
Eigenvalue Equation
  • ?(n) X (n)
    E?n X (n)
  • Where
  • X(n)?n-1 ph lt n ?n Bph n-1 ?n-1 gt
  • (?(n))ph,ph(?n-1?n-1) A ph,phd?n-1?n-1
  • Hpp(?n-1?n-1)dhh
  • - Hhh(?n-1?n-1)dpp
  • Aph,ph (ep eh E?n-1) dph,ph - Gphph
  • Hpp(?n-1?n-1) Sh1h2 Gph1ph2 R h1h2
    (?n-1?n-1)
  • - ½ Sp1p2 Gpp1p2p R p1p2 (?n-1?n-1)
  • Hhh(?n-1?n-1) Sp1p2 Ghp1hp2 R p1p2
    (?n-1?n-1)
  • - ½ Sh1h2 Ghh1h2h R h1h2 (?n-1?n-1)
  • Rab(?n-1?n-1) lt n-1 ?n-1 Bab n-1
    ?n-1 gt

37
Redundancy
  • The states
  • Bph n-1 ?n-1 gt
  • form an overcomplete linearly
  • dependent set.
  • Is there a way out? Yes

38
  • Let us perform the expansion in the redundant
    basis
  • n ?ngt S ?n-1ph Cph (?n ?n-1) Bph
    n-1?n-1 gt
  • We obtain
  • X (n)?n-1 ph lt n ?n Bph n-1 ?n-1 gt
  • S ?n-1ph Cph(?n ?n-1) Dphph(?n-1
    ?n-1)
  • where
  • Dphph (?n-1 ?n-1)
  • lt n-1 ?n-1 B ph
    Bph n-1 ?n-1 gt

39
  • In matrix form
  • X D C
  • Therefore
  • ? X E X
  • (?D)C H C E DC
  • This Eq. is ill defined with respect to inversion
    (D is singular)

40
The way out Choleski method
  • Choleski selects a basis of linear independent
    states
  • Bph n-1 ?n-1 gt
  • spanning the physical subspace of the
  • right dimension
  • Ng lt N
  • Using this basis, we compute a non singular
  • matrix D and get
  • (D-1?D)C EC

41
  • Eq.
  • (D-1?D)C E C
  • yields Ng exact eigensolutions for the
  • n-phonon subspace.
  • We can now move to the (n1)-phonon subspace.
  • We only need to know X(n) and R(n).
  • X(n) is given by
  • X D C

42
  • R(n) is given by the recursive relations
  • Rpp(?n?n) lt n ?n Bpp n ?n gt
  • S ?n-1h Cph (?n ?n-1) X(?n)?n-1 ph
  • S ?n-1?n-1p1h Cph (?n ?n-1) X(?n)?n-1 p1h
  • Rpp(?n-1?n-1)
  • Rhh(?n?n)
  • S ?n-1p Cph (?n ?n-1) X(?n)?n-1 ph
  • S ?n-1?n-1ph1 Cph1 (?n ?n-1) X(?n)?n-1 ph1
  • Rhh(?n-1?n-1)

43
Outcome of iteration the Hamiltonian matrix
  • E?0 H ?0 ?1 H ?0 ?2
    0 0
  • E?1 0 . . .0 H ?1 ?2
    H ?1 ?3 0
  • E?10.0 H ?1 ?2 H
    ?1 ?3 0
  • E ?1 0.0 H ?1 ?2
    H ?1 ?3 0
  • ..
  • E?2 0.. 0
    H ?2 ?3 H ?2 ?4
  • E?2
    0........ 0 H ?2 ?3H ?2 ?4

  • E?2 0..0 H ?2 ?3H ?2 ?4

  • ........................

  • E?3 0 ..0 H ?3 ?4


44
The off diagonal terms
  • are also computed by iteration
  • lt n-1 ?n-1 H n ?n gt S (ph)k
    C(?n)(ph)k
  • lt n-1 ?n-1 H, B(ph)k n-1 ?n-1k gt
    S l X(ph)l (?n-1 ?n-2) lt n-2 ?n-1l H n-1
    ?nk gt
  • lt n-2 ?n-2 H n ?n gt S (ph)k
    C(?n)(ph)k
  • lt n-2 ?n-2 H, B(ph)k n-1 ?n-1k gt
  • X(ph)l (?n-2 ?n-3) lt n-3 ?n-3l H n-1
    ?n-1k gt

45
The Hamiltonian matrix
  • E?0 H ?0 ?1 H ?0 ?2
    0 0
  • E?1 0 . . .0 H ?1 ?2
    H ?1 ?3 0
  • E?10.0 H ?1 ?2 H
    ?1 ?3 0
  • E ?1 0.0 H ?1 ?2
    H ?1 ?3 0
  • ..
  • E?2 0.. 0
    H ?2 ?3 H ?2 ?4
  • E?2
    0........ 0 H ?2 ?3H ?2 ?4

  • E?2 0..0 H ?2 ?3H ?2 ?4

  • ........................

  • E?3 0 ..0 H ?3 ?4


46
Properties of H
  • It is composed of central diagonal blocks
  • Each block corresponds to a given n-phonon
    subspace
  • A given n-block is coupled only to (n?1)- and
    (n?2)-blocks
  • Partitioning Importance
    sampling
  • Severe truncation

47
Status of art Program tests successfully
completed
  • A 16
  • Phonon space
  • p-configurations ? d
  • h-configurations ? s p-1
  • Hamiltonian BonnA

48
Choleski effect Jp 0 T 1
  • Two-phonon space
  • 122
    26
  • Three phonon space
  • 3142
    329

49
Choleski effect Jp 3- T 1
  • Two-phonon space
  • 252
    62
  • Three phonon space
  • 14956
    1438

50
Future program
  • Immediate applications
  • Coupled scheme p-h.
  • Detailed study of
  • anharmonic effects on giant resonances
  • Peculiar collective modes
  • i. ISGDR (squeezed mode), which requires up to
    3h? p-h configurations
  • ii. Twist mode (orbital M2 mode)
  • iii. Double GDR

51
Future program
  • In parallel
  • Eq. of M. in uncoupled (spherical and deformed)
    scheme
  • From p-h to qp to treat open shell nuclei as a
    cheap alternative to large scale shell model

52
More ambitious goal
  • Combine SM (iterative algorithm) with Eq. of M.
    to enlarge the SM space and study i.e. intruders
  • It si possible since the Eq. of M. formalism
    holds for any vacuum state.
  • It can actually be used as alternative to SM in
    several cases (closed subshells)

53
(No Transcript)
54
In many cases the information of interest is
restricted to a few (usually low-lying) states
whose accurate description presumably requires
only a limited subset of the basis states
Identification of the relevant components implies
the knowledge of the wave function ? Adaptive
diagonalization algorithm
55
(No Transcript)
56
Bh ltfi(h-1) Â j gt i 1, , v

j 1, , p
à is a principal submatrix of A
Ã
57
(No Transcript)
58
a more efficient way through the similarity
transform A O -1 A
O
O ? v-dimensional row vector
Iv 0 ? 1
59
(No Transcript)
60
transformed matrix A wj - (?
bj) ? - ? ?v ajj ? bjT decoupling
condition wj 0 ? ajj - ? bj
eigenvalue of A
?vbj ? ? bj wj
ajj - ? bj
61
(No Transcript)
62
Decoupling condition can be recast in form of a
dispersion relation ? bj - Si1,v
bij2 / (ajj-?i - ? bj) ? (? bj)min
? ?max interlacing property of the
eigenvalues ? S i 1,v ?i -
?i (? bj)min gt e
63
  • Choleski decomposition
  • Any real non singular symmetric matrix can be
    written as
  • D L LT
  • Where L ?lij is a lower triangular matrix and
    LT its transpose
  • DetD (DetL)2 l112 l222 ...lii2..

64
  • The elements of L are recursively defined as
  • l211 d11
  • l11 lj1 dj1 j2,.,n
  • l2ii dii Sk1,i-1 l2ik
  • lii lji dji Sk1,i-1 lik ljk

65
  • The decomposition goes on until
  • lrr 0
  • DetL 0 DetD
    0
  • ?r gt is linearly dependent
  • and is to be discarded

66
  • Ordering
  • A linearly independent basis may yield an
    overlap matrix ill defined with respect to
    inversion.
  • To avoid this we arrange the basis in decreasing
    order
  • ?ii ?jj ? j gt I
  • This is automatically achieved
  • if we choose at each step

67
  • the vector yielding the maximum value of
  • dii Sk1,i-1 l2ik


  • dii Sk1,i-1 l2ik djj Sk1,j-1 l2jk
    ? j gt i
  • ?ii ?jj ? j gt i

68
(No Transcript)
69
decompose accordingly the Hamiltonian
H H1 H2
H12 solve the eigenvalue equations
Hi ai Nigt Eai ai Ni gt replace
the standard shell model basis with
a N gt a1 N1 a2 N2 gt ? Orthonormal
correlated basis
Write a Comment
User Comments (0)
About PowerShow.com