Title: Nessun titolo diapositiva
1New (iterative) methods for solving the nuclear
eigenvalue problem Pisa 05
2An importance sampling algorithm for large scale
shell model calculations F. Andreozzi N. Lo
Iudice A. Porrino.
3Currently adopted methods
- Stochastic methodology Monte Carlo (C.W. Johnson
et al. PRL 92), suitable for ground state. Minus
sign problem. - Direct Diagonalization Lanczos (see G.H. Golub
and C.F. Van Loan Matrix Computations 96).
Critical point Sizes of the matrix. - In between Quantum MC (M. Honma et al. PRL 95).
MC to select the relevant basis states. Problems
Redundancy, symmetries broken by the stochastic
procedure.
4- Diagonalization algorithm
- (A. Andreozzi, A. Porrino, and N.Lo Iudice J.
Phys. A 02)Iterative generation of an
eigenspace - A ? Symmetric matrix representing a
self-adjoint operator in an orthonormal basis - 1 gt , 2 gt , , Ngt
- A ? aij lt i  j gt
- Lowest eigenvalue and eigenvector
5 a11 a12 a13 a14 ..
a1N a21 a22
a23 a24 .. a2N a31 a32 a33
a34 .. a3N a41 a42 a43
a44 .. a4N ..
aN1 .. aNN
6Â ?1 a11 f1 gt 1 gt basis 1 gt,
2 gt
Diagonalize the matrix
Â
?2 , f2 gt
k1(2) 1 gt k2(2) 2 gt
7Updated basis f2 gt, 3 gt Compute
b3 lt f2 Â 3 gt
k1(2) a13 k2(2) a23
Diagonalize the matrix
Â
?3 , f3 gt S ki(3) i gt
i 1, 3
8Updated basis fN-1 gt, N gt Compute bN
lt fN-1 Â N gt
Diagonalize
the matrix Â
?N ?
E(1) , fN gt ?(1) gt ? ki(N) i
gt
i 1,
N End first iteration loop
9 First step of the second iteration
Def. f 1(2) gt ?(1) gt ?1(2)
E(1)
Compute b1 lt f1(2) Â 1 gt
the states f1(2) gt, 1gt are not
linearly independent
Generalized eigenvalue problem Â
det ( - ?
) 0
10E(1) , ?(1) E(2) , ?(2)
THEOREM If the sequence E(i) converges ,
then E(i) E (eigenvalue of
the matrix A) ?(i) ?
(eigenvector of the matrix A)
11 Simultaneous determination of v eigensolutions
The structure of the algorithm unchanged
12 ?1 0 . 0 b11 .... b1j
0 ?2 . 0
b21 b2j . .
0 0 .. ?v bv1 .
bvj b11 .... bv1 a11 ..
a1j b12 bv2 a21 .. a2j
.
b1j . bvj aj1 .... ajj
13- Easy implementation
- Variational foundation
- Robust
- Convergence to the extremal eigenvalues
- Numerically stable and ghost-free solutions
- Orthogonality of the computed eigenvectors
- Fast O( N2) operations
c
14IMPORTANCE SAMPLING ? gt S ci
i gt i
1,Nlocalization property ? only m ( N )
ci important diagonalization algorithm
gives quite accurate solutions already in the
first approximation loop
15Sampling procedure (F. Andreozzi, N. L.
A. Porrino, J. Phys. G 03)given e aij ?
? v diag (?i) (i,j 1, , v)
for j v1 , N diagonalize Aj
bj b1j , , bvj
?v bj bjT ajj
16 - select the v lowest eigenvalues
- ?1 , , ?v if S i 1,v ?i -
?i gt e accept the j th state
end loop - requires ? N ? ( v 1)3 operations
17Importance sampling reduces by a factor
N / Nsampled the number of operations The
effectiveness of the reduction depends on the
localization properties of the wave
function Increase of the localization
through the use of a correlated basis ?
model space partitioning
18Numerical Applications
- Semimagic nuclei 108Sn
- NZ 48Cr
- Ngt Z 133Xe
-
-
19 108Sn
1h11/2 3s1/2
2d3/2 1g7/2 2d5/2
Realistic effective interaction deduced from
Bonn A potential . Jp 2 N 17467
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25scaling with n (number of sampled states)
? (n) a b (N/n) exp(-c N/n)
e (n) (d/n2) exp(-c N/n) it allows for
high precision extrapolation n ? N
26Heuristic argument
- consistency
- e(n) ? d? / dn
- from the sampling condition (one target
state) ?? Sj ??j Sj bj2 / ( ajj - ?)
27 In the convergence region
- ajj - ? ? ann - ? ? n
- bj2 lt?j-1 H jgt2 (?j-1 ?i ci
igt) - small and random for j lt n
- zero for jgt
n - bj2 ? exp (- j/n)
28- ?? ? b (N/n) exp(-c N/n)
- e(n) ? d? / dn
- ? (d/n2) exp(-c N/n)
-
29Conclusions
- The algorithm is simple, robust and has a
variational foundation - Once endowed with the importance sampling,
- a) it keeps the extent of space truncation under
strict control - b) it allows for extrapolation to exact
eigensolutions - It is very promising for heavy nuclei
- It may be applied to systems others than nuclei
(molecules, metal clusters, quantum dots etc.)
30Nuclear Eigenvalue problem in a microscopic
multiphonon spaceIterative equation of motion
method
- Naples(Andreozzi, Lo Iudice, Porrino)
- Prague (Knapp, Kvasil)
- collaboration
31 Preliminary remarks
- Standard Shell model is exact and complete within
a given model space. - Often the model space is spanned by ?N 0 h?
- Thus it does not include the high-energy
configurations building up the collective states. - TDA or RPA act in a more restricted but more
selective space (p-h or 2qp configurations up to
n h?) and therefore are in general more suitable
for collective excitations. They, however, do not
account for anharmonic effects. - A multiphonon space is needed for describing
anharmonicity - Problem with multiphonon space
-
- Antisymmetry
Redundancy - Proposed way out Equation of motion method
32Eigenvalue problem Formulation
- Goal Solving
- H a gt Ea a gt
- in a multiphonon space spanned by
- 0 gt, 1, ?1 gt, 2, ?2 gt, . n, ?n gt
- where
- n, ?n gt ?1 ?2 ..?n gt
- ?i gt Sph C
ph(?i ) Bph 0gt - Sph Cph(?i ) ap
ah 0gt
33- lt n ?n H, Bph n-1 ?n-1 gt
- S? lt n ?n H n ? gt lt n ? Bph
n-1 ?n-1 gt - - S? lt n ?n Bph n-1 ? gt lt n-1 ? H
n-1 ?n-1 gt - lt n ?n H n ? gt E?n d?n?
- lt n-1 ? H n-1 ?n-1 gt E?n-1 d?n-1?
Amplitude
- lt n ?n H, Bph n-1 ?n-1 gt
- (E?n - E?n-1) lt n ?n Bph n-1 ?n-1
gt.
34- The commutator yields
- lt n ?n H, Bph n-1 ?n-1 gt
- (ep- eh) lt n ?n Bph n-1 ?n-1 gt
- Sph Gp h h p lt n ?n Bph n-1 ?n-1
gt - S Gpppp lt n ?n Bph Bpp
n-1 ?n-1 gt - S
Gphhp lt n ?n Bph Bhh) n-1
?n-1 gt - S Gph ph lt n ?n Bph Bpp
n-1 ?n-1 gt ) - S
Ghhhh lt n ?n Bph Bhh) n-1
?n-1 gt
Amplitudes
35Linearization
Amplitudes
lt n ?n Bph Bpp n-1 ?n-1 gt
lt n ?n Bph Bhh) n-1 ?n-1
gt
lt n ?n Bph n-1 ?gt lt
n-1 ?Bpp n-1 ?n-1 gt
ÃŽ S ? n-1 ? gtlt n-1 ?
lt n ?n Bph n-1 ?gt lt
n-1 ?Bhh n-1 ?n-1 gt
ÃŽ S ? n-1 ? gtlt n-1 ?
36Eigenvalue Equation
- ?(n) X (n)
E?n X (n) - Where
- X(n)?n-1 ph lt n ?n Bph n-1 ?n-1 gt
- (?(n))ph,ph(?n-1?n-1) A ph,phd?n-1?n-1
- Hpp(?n-1?n-1)dhh
- - Hhh(?n-1?n-1)dpp
- Aph,ph (ep eh E?n-1) dph,ph - Gphph
- Hpp(?n-1?n-1) Sh1h2 Gph1ph2 R h1h2
(?n-1?n-1) - - ½ Sp1p2 Gpp1p2p R p1p2 (?n-1?n-1)
- Hhh(?n-1?n-1) Sp1p2 Ghp1hp2 R p1p2
(?n-1?n-1) - - ½ Sh1h2 Ghh1h2h R h1h2 (?n-1?n-1)
- Rab(?n-1?n-1) lt n-1 ?n-1 Bab n-1
?n-1 gt
37Redundancy
- The states
- Bph n-1 ?n-1 gt
- form an overcomplete linearly
- dependent set.
- Is there a way out? Yes
38- Let us perform the expansion in the redundant
basis - n ?ngt S ?n-1ph Cph (?n ?n-1) Bph
n-1?n-1 gt - We obtain
- X (n)?n-1 ph lt n ?n Bph n-1 ?n-1 gt
- S ?n-1ph Cph(?n ?n-1) Dphph(?n-1
?n-1) - where
- Dphph (?n-1 ?n-1)
- lt n-1 ?n-1 B ph
Bph n-1 ?n-1 gt
39- In matrix form
- X D C
- Therefore
- ? X E X
-
- (?D)C H C E DC
- This Eq. is ill defined with respect to inversion
(D is singular)
40The way out Choleski method
- Choleski selects a basis of linear independent
states - Bph n-1 ?n-1 gt
- spanning the physical subspace of the
- right dimension
- Ng lt N
- Using this basis, we compute a non singular
- matrix D and get
- (D-1?D)C EC
41- Eq.
- (D-1?D)C E C
- yields Ng exact eigensolutions for the
- n-phonon subspace.
- We can now move to the (n1)-phonon subspace.
- We only need to know X(n) and R(n).
- X(n) is given by
- X D C
42- R(n) is given by the recursive relations
- Rpp(?n?n) lt n ?n Bpp n ?n gt
- S ?n-1h Cph (?n ?n-1) X(?n)?n-1 ph
- S ?n-1?n-1p1h Cph (?n ?n-1) X(?n)?n-1 p1h
- Rpp(?n-1?n-1)
- Rhh(?n?n)
- S ?n-1p Cph (?n ?n-1) X(?n)?n-1 ph
- S ?n-1?n-1ph1 Cph1 (?n ?n-1) X(?n)?n-1 ph1
- Rhh(?n-1?n-1)
43Outcome of iteration the Hamiltonian matrix
- E?0 H ?0 ?1 H ?0 ?2
0 0 - E?1 0 . . .0 H ?1 ?2
H ?1 ?3 0 - E?10.0 H ?1 ?2 H
?1 ?3 0 - E ?1 0.0 H ?1 ?2
H ?1 ?3 0 - ..
- E?2 0.. 0
H ?2 ?3 H ?2 ?4 - E?2
0........ 0 H ?2 ?3H ?2 ?4 -
E?2 0..0 H ?2 ?3H ?2 ?4 -
........................ -
E?3 0 ..0 H ?3 ?4 -
44The off diagonal terms
- are also computed by iteration
- lt n-1 ?n-1 H n ?n gt S (ph)k
C(?n)(ph)k - lt n-1 ?n-1 H, B(ph)k n-1 ?n-1k gt
S l X(ph)l (?n-1 ?n-2) lt n-2 ?n-1l H n-1
?nk gt -
- lt n-2 ?n-2 H n ?n gt S (ph)k
C(?n)(ph)k - lt n-2 ?n-2 H, B(ph)k n-1 ?n-1k gt
- X(ph)l (?n-2 ?n-3) lt n-3 ?n-3l H n-1
?n-1k gt -
45The Hamiltonian matrix
- E?0 H ?0 ?1 H ?0 ?2
0 0 - E?1 0 . . .0 H ?1 ?2
H ?1 ?3 0 - E?10.0 H ?1 ?2 H
?1 ?3 0 - E ?1 0.0 H ?1 ?2
H ?1 ?3 0 - ..
- E?2 0.. 0
H ?2 ?3 H ?2 ?4 - E?2
0........ 0 H ?2 ?3H ?2 ?4 -
E?2 0..0 H ?2 ?3H ?2 ?4 -
........................ -
E?3 0 ..0 H ?3 ?4 -
46Properties of H
- It is composed of central diagonal blocks
- Each block corresponds to a given n-phonon
subspace - A given n-block is coupled only to (n?1)- and
(n?2)-blocks - Partitioning Importance
sampling - Severe truncation
47Status of art Program tests successfully
completed
- A 16
- Phonon space
- p-configurations ? d
- h-configurations ? s p-1
- Hamiltonian BonnA
48Choleski effect Jp 0 T 1
- Two-phonon space
- 122
26 - Three phonon space
- 3142
329
49Choleski effect Jp 3- T 1
- Two-phonon space
- 252
62 - Three phonon space
- 14956
1438
50Future program
- Immediate applications
- Coupled scheme p-h.
- Detailed study of
- anharmonic effects on giant resonances
- Peculiar collective modes
- i. ISGDR (squeezed mode), which requires up to
3h? p-h configurations - ii. Twist mode (orbital M2 mode)
- iii. Double GDR
-
51Future program
- In parallel
- Eq. of M. in uncoupled (spherical and deformed)
scheme - From p-h to qp to treat open shell nuclei as a
cheap alternative to large scale shell model
52More ambitious goal
- Combine SM (iterative algorithm) with Eq. of M.
to enlarge the SM space and study i.e. intruders - It si possible since the Eq. of M. formalism
holds for any vacuum state. - It can actually be used as alternative to SM in
several cases (closed subshells)
53(No Transcript)
54 In many cases the information of interest is
restricted to a few (usually low-lying) states
whose accurate description presumably requires
only a limited subset of the basis states
Identification of the relevant components implies
the knowledge of the wave function ? Adaptive
diagonalization algorithm
55(No Transcript)
56Bh ltfi(h-1) Â j gt i 1, , v
j 1, , p
à is a principal submatrix of A
Ã
57(No Transcript)
58 a more efficient way through the similarity
transform A O -1 A
O
O ? v-dimensional row vector
Iv 0 ? 1
59(No Transcript)
60transformed matrix A wj - (?
bj) ? - ? ?v ajj ? bjT decoupling
condition wj 0 ? ajj - ? bj
eigenvalue of A
?vbj ? ? bj wj
ajj - ? bj
61(No Transcript)
62Decoupling condition can be recast in form of a
dispersion relation ? bj - Si1,v
bij2 / (ajj-?i - ? bj) ? (? bj)min
? ?max interlacing property of the
eigenvalues ? S i 1,v ?i -
?i (? bj)min gt e
63- Choleski decomposition
- Any real non singular symmetric matrix can be
written as - D L LT
- Where L ?lij is a lower triangular matrix and
LT its transpose -
- DetD (DetL)2 l112 l222 ...lii2..
64- The elements of L are recursively defined as
- l211 d11
- l11 lj1 dj1 j2,.,n
- l2ii dii Sk1,i-1 l2ik
- lii lji dji Sk1,i-1 lik ljk
65- The decomposition goes on until
- lrr 0
-
- DetL 0 DetD
0 -
- ?r gt is linearly dependent
- and is to be discarded
66- Ordering
- A linearly independent basis may yield an
overlap matrix ill defined with respect to
inversion. - To avoid this we arrange the basis in decreasing
order - ?ii ?jj ? j gt I
- This is automatically achieved
- if we choose at each step
67- the vector yielding the maximum value of
- dii Sk1,i-1 l2ik
-
-
- dii Sk1,i-1 l2ik djj Sk1,j-1 l2jk
? j gt i -
-
- ?ii ?jj ? j gt i
68(No Transcript)
69 decompose accordingly the Hamiltonian
H H1 H2
H12 solve the eigenvalue equations
Hi ai Nigt Eai ai Ni gt replace
the standard shell model basis with
a N gt a1 N1 a2 N2 gt ? Orthonormal
correlated basis