Title: The statistical analysis of fMRI data
1The statistical analysis of fMRI data
- Keith Worsley12, Chuanhong Liao1, John Aston123,
- Jean-Baptiste Poline4, Gary Duncan5, Vali Petre2,
- Frank Morales6, Alan Evans2, Tom Nichols7, Satoru
Hayasaki7 - 1Department of Mathematics and Statistics, McGill
University, - 2Brain Imaging Centre, Montreal Neurological
Institute, - 3Imperial College, London,
- 4Service Hospitalier Frédéric Joliot, CEA, Orsay,
- 5Centre de Recherche en Sciences Neurologiques,
Université de Montréal, - 6Cuban Neuroscience Centre
- 7University of Michigan
2fMRI data 120 scans, 3 scans each of hot, rest,
warm, rest, hot, rest,
T (hot warm effect) / S.d. t110 if no
effect
3Choices
- Time domain / frequency domain?
- AR / ARMA / state space models?
- Linear / non-linear time series model?
- Fixed HRF / estimated HRF?
- Voxel / local / global parameters?
- Fixed effects / random effects?
- Frequentist / Bayesian?
4More importantly ...
- Fast execution / slow execution?
- Matlab / C?
- Script (batch) / GUI?
- Lazy / hard working ?
- Why not just use SPM?
- Develop new ideas ...
- FMRISTAT Simple, general, valid, robust, fast
analysis of fMRI data
5(No Transcript)
6PCA_IMAGE PCA of time ? space
1 exclude first frames
2 drift
3 long-range correlation or anatomical effect
remove by converting to of brain
4 signal?
7FMRILM fits a linear model for fMRI time series
with AR(p) errors
- Linear model
- ?
? - Yt (stimulust HRF) b driftt c errort
- AR(p) errors
- ? ?
? - errort a1 errort-1 ap errort-p s WNt
unknown parameters
8(No Transcript)
9FMRIDESIGN example pain perception
10(No Transcript)
11FMRILM first step estimate the autocorrelation
?
- AR(1) model errort a1 errort-1 s WNt
- Fit the linear model using least squares
- errort Yt fitted Yt
- â1 Correlation ( errort , errort-1)
- Estimating errorts changes their correlation
structure slightly, so â1 is slightly biased
which_stats _cor - Raw autocorrelation Smoothed 12.4mm Bias
corrected â1 -
-0.05 0
12Effective df depends on smoothing
- Variability in acor lowers df
- Df depends
- on contrast
- Smoothing acor brings df back up
dfacor dfresidual(2 1)
1 1 2 acor(contrast of data)2
dfeff dfresidual dfacor
FWHMacor2 3/2 FWHMdata2
Hot-warm stimulus
Hot stimulus
FWHMdata 8.79
Residual df 110
Residual df 110
100
100
Target 100 df
Target 100 df
Contrast of data, acor 0.79
50
50
Contrast of data, acor 0.61
dfeff
dfeff
0
0
0
10
20
30
0
10
20
30
FWHM 10.3mm
FWHM 12.4mm
FWHMacor
FWHMacor
13FMRILM second step refit the linear model
Pre-whiten Yt Yt â1 Yt-1, then fit using
least squares
Hot - warm effect, _mag_ef
Sd of effect, _mag_sd
1
0.25
0.2
0.5
0.15
0
0.1
-0.5
0.05
-1
0
which_stats _mag_ef _mag_sd _mag_t
T effect / sd, 110 df _mag_t
6
4
2
0
-2
-4
-6
14Higher order AR model? Try AR(3) _AR
a
a
a
1
2
3
0.3
0.2
AR(1) seems to be adequate
0.1
0
has little effect on the T statistics
-0.1
AR(1)
AR(2)
AR(3)
5
0
-5
15(No Transcript)
16Results from 4 runs on the same subject
Run 1
Run 2
Run 3
Run 4
1
Effect,
0
E
i
_mag_ef
-1
0.2
Sd,
S
0.1
i
_mag_sd
0
5
T stat,
0
E
/ S
i
i
_mag_t
-5
17_mag_ef
very noisy sd
_mag_sd
and Tgt15.96 for Plt0.05 (corrected)
_mag_t
so no response is detected
18MULTISTAT mixed effects linear model for
combining effects from different
runs/sessions/subjects
- Ei effect for run/session/subject i
- Si standard error of effect
- Mixed effects model
- Ei covariatesi c Si WNiF ? WNiR
from FMRILM
?
?
Usually 1, but could add group, treatment,
age, sex, ...
Random effect, due to variability from run to run
Fixed effects error, due to variability within
the same run
19REML estimation using the EM algorithm
- Slow to converge (10 iterations by default).
- Stable (maintains estimate ?2 gt 0 ), but
- ?2 biased if ?2 (random effect) is small, so
- Re-parameterize the variance model
- Var(Ei) Si2 ?2
- (Si2 minj Sj2) (?2
minj Sj2) - Si2
?2 - ?2 ?2 minj Sj2 (less biased estimate)
?
?
20Solution Spatial regularization of the sd
- Basic idea increase df by spatial smoothing
(local pooling) of the sd. - Cant smooth the random effects sd directly, -
too much anatomical structure. - Instead,
- random effects sd
- fixed effects sd
- which removes the anatomical structure before
smoothing.
? )
sd smooth ?
fixed effects sd
21Average Si
?
Random effects sd, 3 df
Fixed effects sd, 440 df
Mixed effects sd, 100 df
0.2
0.15
0.1
0.05
0
divide
multiply
Random sd / fixed sd
Smoothed sd ratio _sdratio
1.5
random effect, sd ratio 1.3
1
0.5
22Effective df depends on smoothing
- dfratio dfrandom(2 1)
- 1 1 1
- dfeff dfratio dffixed
FWHMratio2 3/2 FWHMdata2
e.g. dfrandom 3, dffixed 4 ? 110
440, FWHMdata 8mm
fixed effects analysis, dfeff 440
dfeff
FWHM 19mm
Target 100 df
random effects analysis, dfeff 3
FWHMratio
23Final result 19mm smoothing, 100 effective df
_mag_ef
_ef
less noisy sd
_sd
_mag_sd
and Tgt4.93 for Plt0.05 (corrected)
_t
_mag_t
and now we can detect a response!
24(No Transcript)
25FWHM the local smoothness of the noise
voxel size (1 correlation)1/2
FWHM (2 log
2)1/2
(If the noise is modeled as white noise smoothed
with a Gaussian kernel, this would be its FWHM)
Volume FWHM3
P-values depend on Resels
Resels
Local maximum T 4.5
Clusters above t 3.0, search volume resels 500
0.1
0.1
0.08
0.08
0.06
0.06
P value of local max
P value of cluster
0.04
0.04
0.02
0.02
0
0
0
500
1000
0
0.5
1
1.5
2
Resels of search volume
Resels of cluster
26Non-isotropic data (spatially varying FWHM)
- fMRI data is smoother in GM than WM
- VBM data is highly non-isotropic
- Has little effect on P-values for local maxima
(use average FWHM inside search region), but - Has a big effect on P-values for spatial extents
smooth regions ? big clusters,
rough regions ? small clusters, so - Replace cluster volume by cluster resels
volume / FWHM3
27_fwhm
_fwhm
FWHM (mm) of scans (110 df)
FWHM (mm) of effects (3 df)
20
20
Resels1.90 P0.007
15
15
10
10
Resels0.57 P0.387
5
5
0
0
FWHM of effects (smoothed)
effects / scans FWHM (smoothed)
20
1.5
15
10
1
5
0
0.5
28STAT_SUMMARY
In between use Discrete Local Maxima (DLM)
High FWHM use Random Field Theory
Low FWHM use Bonferroni
Bonferroni
4.7
4.6
4.5
True
T, 10 df
4.4
Random Field Theory
4.3
T, 20 df
Discrete Local Maxima (DLM)
4.2
Gaussianized threshold
4.1
Gaussian
4
3.9
Bonferroni, NResels
3.8
3.7
0
1
2
3
4
5
6
7
8
9
10
FWHM of smoothing kernel (voxels)
29STAT_SUMMARY
In between use Discrete Local Maxima (DLM)
High FWHM use Random Field Theory
Low FWHM use Bonferroni
0.12
Gaussian
T, 20 df
T, 10 df
0.1
Random Field Theory
Bonferroni
0.08
DLM can ½ P-value when FWHM 3 voxels
0.06
P-value
0.04
Discrete Local Maxima
True
0.02
Bonferroni, NResels
0
0
1
2
3
4
5
6
7
8
9
10
FWHM of smoothing kernel (voxels)
30(No Transcript)
31STAT_SUMMARY example single run, hot-warm
Detected by BON and DLM but not by RFT
Detected by DLM, but not by BON or RFT
32Tgt4.86
33Tgt4.86
T gt 4.93 (P lt 0.05, corrected)
34Tgt4.86
T gt 4.93 (P lt 0.05, corrected)
35Tgt4.86
36Conjunction Minimum Ti gt threshold
Minimum of Ti _conj
Average of Ti _mag_t
For P0.05, threshold 1.82
For P0.05, threshold 4.93
Efficiency 82
37Efficiency optimum block design
Sd of hot stimulus
Sd of hot-warm
0.5
0.5
20
20
0.4
0.4
15
15
Optimum design
Magnitude
0.3
0.3
10
10
Optimum design
0.2
0.2
X
5
5
0.1
0.1
0
X
0
0
0
5
10
15
20
5
10
15
20
InterStimulus Interval (secs)
(secs)
(secs)
1
1
20
20
0.8
0.8
15
15
Delay
0.6
0.6
Optimum design X
Optimum design X
10
10
0.4
0.4
5
5
0.2
0.2
(Not enough signal)
(Not enough signal)
0
0
0
5
10
15
20
5
10
15
20
Stimulus Duration (secs)
38Efficiency optimum event design
0.5
(Not enough signal)
uniform . . . . . . . . .
____ magnitudes . delays
random .. . ... .. .
0.45
concentrated
0.4
0.35
0.3
Sd of effect (secs for delays)
0.25
0.2
0.15
0.1
0.05
0
5
10
15
20
Average time between events (secs)
39How many subjects?
- Largest portion of variance comes from the last
stage i.e. combining over subjects - sdrun2 sdsess2
sdsubj2 - nrun nsess nsubj nsess nsubj
nsubj - If you want to optimize total scanner time, take
more subjects. - What you do at early stages doesnt matter very
much!
40Estimating the delay of the response
- Delay or latency to the peak of the HRF is
approximated by a linear combination of two
optimally chosen basis functions
delay
basis1
basis2
HRF
shift
- HRF(t shift) basis1(t) w1(shift)
basis2(t) w2(shift) - Convolve bases with the stimulus, then add to
the linear model
41- Fit linear model, estimate w1 and w2
- Equate w2 / w1 to estimates, then solve for
shift (Hensen et al., 2002) - To reduce bias when the magnitude is small, use
- shift / (1 1/T2)
- where T w1 / Sd(w1) is the T statistic for the
magnitude - Shrinks shift to 0 where there is little
evidence for a response.
w2 / w1
w1
w2
42Shift of the hot stimulus
T stat for magnitude _mag_t T stat for
shift _del_t
Shift (secs) _del_ef Sd of shift
(secs) _del_sd
43Shift of the hot stimulus
T stat for magnitude _mag_t T stat for
shift _del_t
Tgt4
T2
Shift (secs) _del_ef Sd of shift
(secs) _del_sd
1 sec
/- 0.5 sec
44Combining shifts of the hot stimulus (Contours
are T stat for magnitude gt 4)
_ef
_del_ef
_sd
_del_sd
_t
_del_t
45Shift of the hot stimulus
Shift (secs) _del_ef
T stat for magnitude _mag_t gt 4.93
46- Comparison
- Different slice acquisition times
- Drift removal
- Temporal correlation
- Estimation of effects
- Rationale
- Random effects
- Map of the delay
- SPM99
- Adds a temporal derivative
- Low frequency cosines (flat at the ends)
- AR(1), global parameter, bias reduction not
necessary - Band pass filter, then least-squares, then
correction for temporal correlation - More robust,
- but lower df
- No regularization,
- low df, no conjuncs
- No
- fmristat
- Shifts the model
- Splines
- (free at the ends)
- AR(p), voxel parameters, bias reduction
- Pre-whiten, then least squares (no further
corrections needed) - More accurate, higher df
- Regularization, high df, conjuncs
- Yes
47References
- http//www.math.mcgill.ca/keith/fmristat
- Worsley et al. (2002). A general statistical
analysis for fMRI data. NeuroImage, 151-15. - Liao et al. (2002). Estimating the delay of the
response in fMRI data. NeuroImage, 16593-606.
48Functional connectivity
- Measured by the correlation between residuals at
every pair of voxels (6D data!) - Local maxima are larger than all 12 neighbours
- P-value can be calculated using random field
theory - Good at detecting focal connectivity, but
- PCA of residuals x voxels is better at detecting
large regions of co-correlated voxels
Activation only
Correlation only
Voxel 2
Voxel 2
Voxel 1
Voxel 1
49Correlations gt 0.7, Plt10-10 (corrected)
First Principal Component gt threshold
50False Discovery Rate (FDR)
- Benjamini and Hochberg (1995), Journal of the
Royal Statistical Society - Benjamini and Yekutieli (2001), Annals of
Statistics - Genovese et al. (2001), NeuroImage
- FDR controls the expected proportion of false
positives amongst the discoveries, whereas - Bonferroni / random field theory controls the
probability of any false positives - No correction controls the proportion of false
positives in the volume
51P lt 0.05 (uncorrected), T gt 1.64 5 of volume is
false
Signal Gaussian white noise
Signal
True
Noise
False
FDR lt 0.05, T gt 2.82 5 of discoveries is false
P lt 0.05 (corrected), T gt 4.22 5 probability of
any false
52Comparison of thresholds
- FDR depends on the ordered P-values
- P1 lt P2 lt lt Pn. To control the FDR at a
0.05, find - K max i Pi lt (i/n) a, threshold the
P-values at PK - Proportion of true 1 0.1 0.01
0.001 0.0001 - Threshold T 1.64 2.56 3.28
3.88 4.41 - Bonferroni thresholds the P-values at a/n
- Number of voxels 1 10 100 1000
10000 - Threshold T 1.64 2.58 3.29
3.89 4.42 - Random field theory resels volume / FHHM3
- Number of resels 0 1 10
100 1000 - Threshold T 1.64 2.82 3.46
4.09 4.65
53P lt 0.05 (uncorrected), T gt 1.64 5 of volume is
false
54FDR lt 0.05, T gt 2.67 5 of discoveries is false
55P lt 0.05 (corrected), T gt 4.93 5 probability of
any false
56Random fields andbrain mapping
- Keith Worsley
- Department of Mathematics and Statistics,
- McConnell Brain Imaging Centre,
- Montreal Neurological Institute,
- McGill University
57(No Transcript)