Title: Experimentele Modale Analyse
1 Experimentele Modale Analyse
- LES 3 NIETPARAMETRISCHE EN PARAMETRISCHE
SCHATTINGEN
Patrick Guillaume E-mail patrick.guillaume_at_vub.
ac.be Tel. 02/6293566
2Statistic properties of estimators
- Consistency
- Efficiency
- Cramer-Rao Lower Bound
OK NOT OK
OK NOT OK
3What is Curve Fitting?
- Least-Squares Fit (Static)
4SISO Errors-in-Variables Model
output
input
5Noise in the Output Measurement
- Force measurement
- Electrical noise
- Response measurement
- Electrical noise
- Machines, footsteps, wind, sound, will result
in mechanical noise (process noise) - Least-Squares Estimation
- Minimize the effect of output noise
6Noise in the Input Measurement
- At its natural frequencies the structure becomes
very compliant - Least-Squares Estimation
- Minimize the effect of input noise
7The Coherence Function
- Degree of linearity
- Smaller than 1 when
- Noise in the measurements
- Nonlinearities
8Noise in the Input and Output Measurements
- Choice of optimal FRF estimator
- H1
- Under estimation
- H2
- Over estimation
- Hv, Hiv,
9MIMO Errors-in-Variables Model
10Classical MIMO FRF estimators
- H1 estimator (Least Squares)
- H2 estimator (Least Squares)
- Hv estimator (Total Least Squares)
11Errors-in-Variables Approach
12Instrumental Variables
13FRF estimators for periodic signals
- In theory
- Number of problems
- Mechanical noise in the structure
- Electrical noise in the instrumentation
- Averaging
14Bias error of FRF estimates
1
2
15Bias error of FRF estimates
16Empirical TF estimate (ETFE)
- Scalar systems
- Multivariable systems with Ni inputs
17Periodic Signals 2 Inputs
1
18Periodic Signals Multivariable Systems
- Errors-in-variables model (synchronized meas.)
19Optimal Experimental Design
- D-optimal design find the amplitude-constrained
inputs that minimizes the determinant of the CRLB
(Cramer-Rao Lower Bound) - Stepped-sine excitation
- 2 inputs (0, 0), (0, 180)
- 3 inputs (0, 0, 0), (0, 120, -120),
(0, -120, 120) - Multisine excitation
- Hadamard matrix
20Optimal Experimental Design Multisines
21Parameter Estimation by Curve Fitting
22Modal Model is Nonlinear-in-the-Parameters
23Curve-Fitters for Modal Analysis
24Linear Least-Squares Solution
- Over-determined set of real-valued equations
(mgtn) - Equation error vector
- LS cost function
- Stationary points
25Example 1 LS Fit of 1/k (Static)
26Example 2 LS Fit of SDOF Model
27Local and Global Curve Fitters
- Poles are global parameters
- Residues are local parameters
- Two step approach
28Least Squares Complex Exponential LSCE
29Stabilization Diagram
30Least Squares Frequency Domain LSFD
31PZL Mielec Skytruck (FLiTE Project)
32Mode Shapes (3.17 Hz, 1.62 )
33Mode Shapes (8.39 Hz, 1.93 )