Experimentele Modale Analyse - PowerPoint PPT Presentation

About This Presentation
Title:

Experimentele Modale Analyse

Description:

Curve-Fitters for Modal Analysis. SDOF (Dynamic) EXPERIMENTELE ... Local and Global Curve Fitters. Poles are global parameters. Residues are local parameters ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 34
Provided by: Ann962
Category:

less

Transcript and Presenter's Notes

Title: Experimentele Modale Analyse


1
Experimentele Modale Analyse
  • LES 3 NIETPARAMETRISCHE EN PARAMETRISCHE
    SCHATTINGEN

Patrick Guillaume E-mail patrick.guillaume_at_vub.
ac.be Tel. 02/6293566
2
Statistic properties of estimators
  • Consistency
  • Efficiency
  • Cramer-Rao Lower Bound

OK NOT OK
OK NOT OK
3
What is Curve Fitting?
  • Least-Squares Fit (Static)

4
SISO Errors-in-Variables Model
output
input
5
Noise in the Output Measurement
  • Force measurement
  • Electrical noise
  • Response measurement
  • Electrical noise
  • Machines, footsteps, wind, sound, will result
    in mechanical noise (process noise)
  • Least-Squares Estimation
  • Minimize the effect of output noise

6
Noise in the Input Measurement
  • At its natural frequencies the structure becomes
    very compliant
  • Least-Squares Estimation
  • Minimize the effect of input noise

7
The Coherence Function
  • Degree of linearity
  • Smaller than 1 when
  • Noise in the measurements
  • Nonlinearities

8
Noise in the Input and Output Measurements
  • Choice of optimal FRF estimator
  • H1
  • Under estimation
  • H2
  • Over estimation
  • Hv, Hiv,

9
MIMO Errors-in-Variables Model
10
Classical MIMO FRF estimators
  • H1 estimator (Least Squares)
  • H2 estimator (Least Squares)
  • Hv estimator (Total Least Squares)

11
Errors-in-Variables Approach
  • GTLS
  • H1 (LS)
  • Hv (TLS)

12
Instrumental Variables
13
FRF estimators for periodic signals
  • In theory
  • Number of problems
  • Mechanical noise in the structure
  • Electrical noise in the instrumentation
  • Averaging

14
Bias error of FRF estimates
  • 1
  • 2

1
2
15
Bias error of FRF estimates
16
Empirical TF estimate (ETFE)
  • Scalar systems
  • Multivariable systems with Ni inputs

17
Periodic Signals 2 Inputs
1
18
Periodic Signals Multivariable Systems
  • Errors-in-variables model (synchronized meas.)

19
Optimal Experimental Design
  • D-optimal design find the amplitude-constrained
    inputs that minimizes the determinant of the CRLB
    (Cramer-Rao Lower Bound)
  • Stepped-sine excitation
  • 2 inputs (0, 0), (0, 180)
  • 3 inputs (0, 0, 0), (0, 120, -120),
    (0, -120, 120)
  • Multisine excitation
  • Hadamard matrix

20
Optimal Experimental Design Multisines
21
Parameter Estimation by Curve Fitting
  • Gold in ? Gold out

22
Modal Model is Nonlinear-in-the-Parameters
23
Curve-Fitters for Modal Analysis
  • SDOF (Dynamic)

24
Linear Least-Squares Solution
  • Over-determined set of real-valued equations
    (mgtn)
  • Equation error vector
  • LS cost function
  • Stationary points

25
Example 1 LS Fit of 1/k (Static)
26
Example 2 LS Fit of SDOF Model
27
Local and Global Curve Fitters
  • Poles are global parameters
  • Residues are local parameters
  • Two step approach

28
Least Squares Complex Exponential LSCE
29
Stabilization Diagram
30
Least Squares Frequency Domain LSFD
31
PZL Mielec Skytruck (FLiTE Project)
32
Mode Shapes (3.17 Hz, 1.62 )
33
Mode Shapes (8.39 Hz, 1.93 )
Write a Comment
User Comments (0)
About PowerShow.com