Topographic processing of relational data - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Topographic processing of relational data

Description:

Topographic processing of relational data. Barbara Hammer, TU Clausthal, Germany ... converges for every symmetric nonsingular D. Supervision ... – PowerPoint PPT presentation

Number of Views:17
Avg rating:3.0/5.0
Slides: 22
Provided by: sebastia3
Category:

less

Transcript and Presenter's Notes

Title: Topographic processing of relational data


1
Topographic processing of relational data
Barbara Hammer, TU Clausthal, Germany Alexander
Hasenfuss, TU Clausthal, Germany Fabrice Rossi,
INRIA, France Marc Strickert, IPK Gatersleben,
Germany
2
  • Topographic processing of euclidean data
  • SOM
  • NG
  • Topographic processing of relational data
  • Median clustering
  • Relational clustering
  • Supervision
  • Experiments
  • Proteins
  • Chromosome images
  • Macroarrays

3
Topographic processing of euclidean data
4
(No Transcript)
5
SOM and NG
  • Prototype based clustering
  • prototypes element of data space
  • clustering by means of receptive fields
  • euclidean distance

6
SOM
Self-organizing map initialize wi adapt wi
exp(-rk(xj,wi)/s)(xj-wi)
almost optimizes ESOM ?ij?j(i)?kexp(-nd(i,k
)/s) (xj-wk)2
direct visualization in euclidean or hyperbolic
space
7
Neural Gas
almost optimizes ESOM ?ij?j(i)?kexp(-nd(i,k
)/s) (xj-wk)2
kij
Batch-SOM repeat
optimize kij given fixed w
optimize w given fixed kij i.e.
repeat kij 1 iff wi
winner for xj , I(xi) winner
wi ?j exp(-nd(I(xj),i)/s) xj / ?j
exp((-nd(I(xj),i)/s) converges, (quadratic)
Newton scheme
8
Neural Gas
Neural Gas initialize wi adapt wi
exp(-rk(xj,wi)/s)(xj-wi)
optimizes ENG ?ijexp(-rk(xj,wi)/s) (xj-wi)2
neighborhood graph induced by Delaunay
triangulation visualization by means of MDS or
similar
9
Neural Gas
optimizes ENG ?ijexp(-rk(xj,wi)/s) (xj-wi)2
kij
Batch-NG repeat optimize
kij given fixed w optimize
w given fixed kij i.e. repeat
kij rank of prototype wi given
xj wi ?j exp(-kij/s) xj
/ ?j exp(-kij/s) converges, (quadratic) Newton
scheme
10
Topographic processing of noneuclidean data
11
left angle
12
median clustering restrict prototypes to data
positions relational clustering substitute
distance from prototype
dij
method to represent wi and compute distances
  • dissimilarity matrix D or data
  • no (explicit) euclidean embedding

13
Median clustering
  • Median clustering
  • no assumptions on D
  • prototypes restricted to data points ? only
    discrete values
  • consecutive optimization of kij and wi as
    beforehand

Median-NG kij rank of
prototype wi given xj wi xk
with ?ij exp(-kij/s) (xj-xk)2 minimum
avoid identical prototypes!
converges for every D
14
Relational clustering
  • Relational clustering
  • d(xi,xj) f(xi)-f(xj)2 is euclidean, but
    embedding unknown

optimum prototypes fulfill wi ?l ail xl where
?ail 1 normalized ranks ? xj-wi2 (D ai)j
½ ait D ai ? dual cost function ENG ?i?ll
exp(-rk(xl,wi)/s) exp(-rk(xl,wi)/s) d(xl,xl)2 /
4 ?lexp(-rk(xl,wi)/s)
Relational-NG xj-wi2 (D ai)j ½ ait D
ai kij rank of prototype wi
given xj aij exp(-kij/s),
normalize
only implicit prototypes represented by aij ?
continuous adaptation converges for every
symmetric nonsingular D
15
Supervision
  • integrate additional label information for data
    yi
  • enrich prototypes by labels Yj
  • substitute distance
  • xi-wj2 ? ß xi-wj2 (1-ß) yi-Yj2
  • solve as beforehand

16
Experiments
17
Proteins
  • Protein classifiation
  • 226 points, 5 classes (HA, HB, MY, GG/GP, other)
  • alignment measures evolutionary distance of
    globin proteins
  • 29 neurons, 150 epochs,
    repeated
    cross-validation,

    mixing
    parameter 0.5

18
Proteins
  • Visualization

NG MDS
HSOM
19
Chromosomes
  • Kopenhagen Chromosome database
  • 4200 points, 22 classes, alignment distance
  • difference of thickness profiles of grey images
  • 85 neurons, 100 epochs,
    repeated
    cross-validation,
    mixing
    parameter 0.9

20
Macroarray data
  • Macroarray data
  • gene expressions at 14 time points after
    flowering
  • 4824 selected genes
  • 85 epochs, 150 neurons, no supervision
  • Pearson correlation

21
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com