Title: Kein Folientitel
1Fundamental concepts Charge properties of
proteins Factors influencing protein
charge Donnan effect Choice of buffer Trials to
determine pH Trials to determine salt Gradient
elution (Type I and Type II) Typical protocoll
Models describing ion-exchange process
2Adsorption equilibrium
LINEAR
CONVEX
KONCAV
Stationäry Phase (q)
Mobile Phase
(C)
Mobile Phase
(C)
Mobile Phase
(C)
q Concentration in solid phase qm maximal
concentration in solid phase C
concentration in liquid phase K Distribution
(partition) coefficient a, b emprical
parameter
3Mobile phase modifer and adsorption
O. Kaltenbrunner and A. Jungbauer, Adsorption
isotherms in protein chromatography Combined
influence of protein and salt concentration on
adsorption isotherm. J. Chromatogr. A 734 (1996)
183-194
4Langmuir adsorptions isotherm
5Scatchard plot
6Estimation of equilibrium parameters
7Stoffbilanz in der Säule
Unter Gleichgewichtsbedingungen
8Ideal chromatography migration of a solute
? Phase ratio K Tangen of adsoption isotherm
9Non-ideal/ideal chromatography
Ideal
Non-ideal
10Models of Chromatography
- Plate model
- Martin and Synge model
- Craig model
- Mass balance
- Ideal Model
- Equilibrium-dispersive model
- Lumped kinetics model
- General rate theory
11Plate model
- establishing a mass balance for each plate
- concept of height equivalent of a theoretical
plate (HETP) - originally for linear isotherms
12Martin and Synge plate model
- Continous model
- Ratio between mobile and stationary phase volume
are identical and constant - Infinitestimal fraction of mobile phase volume
passes from stage to stage
13Martin and Synge plate model
14Craig plate model I
- Discrete model
- Ratio between mobile and stationary phase volume
are identical and constant - Whole amount of mobile phase moves to the next
stage when equilibrium is attained
15Craig plate model II
Mass balance for the jth stage
Binomial distribution for linear
isotherm ?Gaussian distribution for high plate
numbers
16Comparison
- Different distributions with same limit for
increasing N - Less peak dispersion in Craig model, related by
17Other plate models
- Sectional model as an extension of the Craig
model - Tank-in-series model as an extension of the
Martin and - Synge model
18Mass balance equation
- Use of partial differential equations describing
- a differential mass balance of the solute in a
slice of column and - its kinetics of mass transfer in the column
Ideal model Equilibrium dispersive model
Lumped-kinetic model General rate equation model
19Mass balance
for each component in the system
20Ideal model
- no axial dispersion nor mass transfer kinetics
- stationary phase is given by equilibrium isotherm
- focuses on influence of nonlinear thermodynamics
of phase equilibria - for large samples with hightly efficient columns
there is a good agreement with the experimental
chromatograms
21Nonuniformity of Flow
Column inlet design (scale up) Packing
quality Column diameter Viscosity difference
between feed and eluent (concentrated samples)
viscosous fingering Velocity
22Equilibrium dispersive model I
- When mass transfer kinetics are fast but not
infinitely fast - All contributions due to nonequilibrium can be
lumped into an apparent axial dispersion term - The apparent axial dispersion term is independent
of the concentration of the sample components
23Equilibrium dispersive model
with apparent dispersion coefficient
24Band Profiles
- Relationship between equilibrium isotherm and the
band profile for single components.
25Mass Transfer and Kinetics of Adsorption
Biochromatography Large molecules ? slow
diffusion
26Lumped kinetic model
- D accounts only for axial dispersion
- Also linear driving force (LDF) model
- All contributions of mechanisms involved in band
broadening, due to their relatively slow kinetics
are lumped in a single rate coefficient
L
27Lumped kinetic model
- If rate of equilibrium kinetics is high, there is
no difference between the lumped kinetic and the
equilibrium-dispersive model - Developed for linear isotherms, but exact for
non-linear isotherms if external mass transfer is
controlling - Depending on assumptions, different models can be
distinguished - reaction-dispersive model
- transport-dispersive model
28Reaction-dispersive model
- Influence of mass transfer is negligible
- Only the kinetics of adsorption and desorption
are taken in account
29Transport-dispersive model
- adsorption-desorption kinetics are infinitely
fast, only mass transfer kinetics are taken in
account
30General rate model
- Attempts to consider silmutaneously all possible
contributions to mass transfer kinetics - Two mass balance equations for one solute, one
for the mobile phase between the particles and
one for the stagnant mobile phase inside the
particle - Described using the component balance equation
- Mass transfer mechanisms considered
- ? external (film) mass transfer
- ? pore diffusion
- ? solid (surface) diffusion
- ? reaction kinetics at phase boundary
31Rate equation
32(No Transcript)
33(No Transcript)
34Geometry of Phases
Planar, column and capillary chromatography
35Media for Biochromatography
36Gel in a Shell
37Controlled pore glass
38Ceramic Hydroxyapatite
39Virus purification
40Pressure Drop of Soft Media
Rigid media Konzeny-Karman relationship
Soft media
a correlates with D/L
Joustra et al. (1967) Prodites of the Biological
Fluids 15, 57-579 Mohammad et al. 1992, (Ind.
Eng. Chem. Res.) 31-561
41Scale up of Compressible Beds
L 20 cm (L0 24.3) T 6C
L 15 cm (L0 19.0) T 6C
42Features of Media
43Pore size
Particle density 0.6-0.9 g/cm3 porosity 0.4-0.6
44Retardation Forces and Principle of Separation
45Physicochemical Conditions In Biochromatography
46Categories of Elution Development
(A) Elution development, (B) displacement
development and (C) frontal Analysis
47Elution modes
Isocratic elution (A), gradient Elution (B), Step
gradient elution (C) and displacement development
(D)
48Performance factors
Extra column effects
Efficiency (HETP)
Selectivity
Resolution
Dynamic capacity
Kinetics
Phase equilibrium
49Height Equivalent to One Theoretical Plate
H HETP (heigth equivalent to one theoretical
plate) h Reduced plate height L Column
length N Plate count dp Particle diameter
50Theoretical and Effective Plate Number
51Determination of N
Peakwidth at base (w) 4 ? at point of
inflection (w) 2 ? at half heigth (w)
2.355 ?.
52Detemination of N by Breakthrough Curves
H.P.Lettner, O. Kaltenbrunner, and A. Jungbauer,
HETP in Process Ion-Exchnage Chromatography, J.
Chromatogr. Sci. 33 (1995) 451-457 D.U. von
Rosenberg mechanics of steady state single-phase
fluid displacement from porous media, AIChJ 2
(19956) 55-61
53Resolution (R)
54Selectivity vs Efficiency
55Separation Efficiency and Particle Size
56Extra Column Effects
2
,
0
Slope e
1
,
5
l
1
,
0
m
Pulse response experiments same column diamter
different height
R
V
Intercept Ve
0
,
5
0
,
0
0
,
0
1
,
0
2
,
0
3
,
0
m
l
V
t
Kaltenbrunner, O., Jungbauer, A. and Yamamoto, S.
(1997) Prediction of the preparative
chromatography performance with a very small
column J Chromatogr A, 760, 41-53.
57Porosity
58Extra Column Band Spreading
0.10
1.0
0.08
0.8
0.06
0.6
2
ml2
ex
s
2
total
s
0.04
0.4
0.02
0.2
0.00
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0
2
4
6
8
10
2
2
V
ml
V
ml
R
t
59Sample Loading
60Pre- and Post Column Band Spreading
61Influence of Extra Column Effects on Performance
62(No Transcript)
63Das Coulombsches Gesetz
F Anziehungskraft zweier Punktladungen
N qn Ladung C r Abstand m ?0 Dielektrizitäts
konstante im Vakuum 7,854 x 10-2 C2N-1m2 ?
Dielektrizitätskonstante -
64s Flächenladungsdichte (Anzahl der
funktionellen Gruppen, Ionisierbarkeit, Art
des Elektrolyten, Elektrolytkonzentration. ??
Potentialsprung d Dicke der Grenzschicht e1,
e0 Dielektrizitätszahl des Mediums oder Vakuum
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69Nettoladung Funktion des pH
70Verteilung der isoelektrischen Punkte von
Proteinen
71Säulenmethode
Wahl der Bedingungen für die Bindung eines
Proteins an einen Ionentauscher, physikochemische
Eigenschaften unbekannt
72Zusammenhang zwischen Salzkonzentration und dem
gebundenen Protein am Beispiel des
Rinderserumalbumins
73Wahl der Bedingungen für die Bindung eines
Proteins an einen Ionentauscher, physikochemische
Eigenschaften unbekanntTeströhrchenmethode
74(No Transcript)
75(No Transcript)
76Donnan effect
77Flüchtige Puffer für die Ionentauscher
Chromatographie
78(No Transcript)
79(No Transcript)
80Tris
Phosphat
81Tris
Phosphate
82Die einzelnen Stufen der Ionentauscherchromatograp
hie
83(No Transcript)
84Steric Mass Action Model
Boardmann and Partridge 1995
k relative retention b empirical
parameter a empirical parameter I ionic strenght
85Steric Mass Action Model
Cm Protein in der mobilen Phase Cs Protein in der
stationären Phase Is Salz in der stationären
Phase Im Salz in der mobilen Phase
Kf Geichgewichtsreaktionskonstante
86(No Transcript)
87(No Transcript)
88(No Transcript)
89Absatzweise Adsorption/Desoption
f Fraktion adsorbierten Proteins q Proteinkonzentr
ation in der festen Phase C Proteinkonzentration
in der mobilen Phase ? Verteiluungskoeffizient ?
Nerntscher Verteilungskoeffizient ? q/(q
C)
Vm Volumen der flüssigen Phase,
Vs Volumen der festen Phase
90Vs/Vm
91Praktische Durchführung der absatzweisen
Adsorption/Desorption
92Hydrophobic Interaction Chromatography
93The Hydrophobic Surface
Matrix, Base, Length of ligand, Ligand density
94Models Describing Adsorption
- Solvophobic model
- Preferential interaction analysis
- Flickering cluster model
- Random network model
- Continum model for liquid water
95Effect of salt on protein solublity
Green, A.A. and Hughes, W.L. (1955) Methods in
Enzymology Vol I. Academic Press Inc. New York
96Salt Promoted Adsorption
- Cavity for protein is formed
- Protein fills cavity
- (Fusion of cavities?aggregation?precipitation)
- Water and ions surround the hydrophobic surface
- Hydrophobic interaction (Van der Waals forces)
between proteins and surface - Structural rearrangement of protein
- Rearrangement of water and ions in the bulk
solution
Driving force is reduction of surface area
97The Solvophobic Model
,
Melander and Horvath 1977 Arch. Biochem.
Biophys.183 200-215
Staby and Mollerup, 1996 J. Chromatogr. A 734,
205-212
98Solvophobic Model II
Melander et al, 1989 J. Chromatogr. 469, 3-27
Hearn, 2000 in Handbook of Bioseparations, ed.
Ahuja, Academic Press
99lnk vs Ionic strength
100High Selectivity
Intracellular expression of rHSA in S. cervesiae
with a FLAG-tag
kD
200
119
? rHSA
95
66
45
33
21
Yeast extract Desalted yeast extract Flow through
Anti-FLAG column Eluate Anti FLAG column
Schuster, M., Wasserbauer, E., Ortner, C.,
Graumann, K., Jungbauer, A., Hammerschmid, F. and
Werner, G. (2000) Short cut of protein
purification by integration of cell-disrupture
and affinity-extraction Bioseparation, 9, 59-67.
101Affinity chromatography
- Selectivity of ligand ? ligand density
- Capacity of sorbent ? ligand density
- Adsorption/desorption kinetics of immobilized
ligand - Elution conditions
- Mass transfer properties
102Biospecific Interactions
Selective interaction of biomolecules with
immobilzed ligands
Ligand Ligate
Substrate, Inhibitor, Cofactor Enzyme,
Receptor Antibody Antigen Lectin Glycoprote
in Nucleic acid Complementary
sequence Dye Protein Peptide Protein
103Functional groups used for immobilization of
biomolecules
Proteins/Peptides -NH2 -SH -COOH
Nucleic acids -PO4 - pyrimidine, purine
bases
Glycoproteins - sugar moeity
Active hydrogen containing compounds
104Activation methods
105Restricted diffusion with large molecules
a effective molecular radius of adsorbate rrB
effectively open portion of pore
Permeability dependant on fractional saturation
and effective radius of ligate 3,4 small radius
of ligand and dsorbate 5 large radius of adsorbate
Petropoulos et al., Bioseparation 1 (1990), 69-88
106Influence of pore size on coupling yield
Relation of pore size to surface area Quantity of
protein coupled
107Optimization
Variables and response values
108- Column size/shape
- height (Z)
- diameter
- height to diameter ratio height to particle
diameter - Mobile phase
- modifier composition
- rate of change of mobile phase modifier
composition (gradient shape) - Flow rate (u)
- flow rate during loading, during elution during
regeneration - residence time (Z/u)
- Loading
- volume
- concentration
- flow rate
109- Physical conditions of packing
- packing quality
- packing density
- Stationary phase
- ligand type
- ligand density
- type of support
- porosity, tortuosity
- bead diameter
- beads size distribution (monodispers)
- Temperature
-
110Response Values
Productivity (P) QR purity ratio C0
sample concentration VF feed volume Vt
column volume tC cycle time (process time).
tlife column life time Yield or recovery (Y)
VR product volume CR product concentration
111DBC VBTC C0
Dynamic capacity Purity Concentration factor
(CF) C0 inital (feed) concentration, VF
feed volume CR recovered concentration VR
recovered volume Process time.
112Dynamic and Static Binding Capacity
DBC VBTC C0
113DBC VBTC C0
Dynamic capacity Purity CR recovered product
concentration CR,,total protein concentration in
recovered pool Concentration factor (CF) C0
inital (feed) concentration, VF feed volume
VR recovered volume Process time (tprocess)
114(No Transcript)
115(No Transcript)
116Scale Up
Z/D? constant
Z/D constant
R1 ? R2 VF1 ? VF2
117Scale up by Constant Residence Time
H Plate height N Plate number A,B,C Parameter
in van Demter equation u Velocity of mobile
phase t0 Residence time
Consequence resolution remains
constant Everything is normalized in respect to Vt
118DBC 0.5 cm i.d. x 10 cm
Non Agarose-based media
Agarose-based media
119DBC versus residence time
Hahn, R., Schlegel, R. Jungbauer, A. Comparison
of Protein A affinity sorbents. J Chromatogr B
790, 35-51 (2003).
120A ?-Lactoglobulin Separation on Source30Q
The flow rate, gradient length and load are
scaled to the column volume. The flow rate is 30
CV/h. Column dimensions are 1x10 and 2 x17.7 cm.
2
1
Scale-up 17
Flow rates 305 cm/h 531 cm/h
?t12 5.00 and 4.97 min
Scale-up experiment performed at DTU and
presented at ISPPP 2000
121Changing Particle Diameter
Consequences Productivity ? Buffer consumption
? Process time ? Purity is constant
122Batch operation continuous operation
Carrousell Chromatography Annular
Chromatography True Moving Bed Chromatography Simu
lated Moving Bed Chromatography
123Bed collapse
Chaotic event not predictable
124Flow sheeting
Choose separation process based on different
physical, chemical, or biochemical
properties. Separate the most plentiful
impurities first . Choose those processes that
will exploit the differences in the
physicochemical properties of the product and
impurities in the most efficient manner Use a
high-resolution step as soon as possible Do the
most arduous step last.
125Factorielles Design
Follman DK, Fahrner RL Factorial screening of
antibody purification processes using three
chromatography steps without protein A. J
Chromatogr A (2004) 102479-85.