Title: Honors Physics Chapter 3
1Honors Physics Chapter 3
- Chapter 3 2-D Motion
- Vectors
- Vector Operations
- Projectile Motion
- Circular Motion
2Vectors
- Vectors are graphically represented by arrows
- The direction of the physical quantity is given
by - the direction of the arrow.
- The magnitude of the quantity is given by the
- length of the arrow.
3Addition of Vectors
- Graphical Tail-to-head method
- Resultant of Velocities (Addition of Vectors)
4Graphical Method - Example
- You are told to walk due east for 50 paces, then
- north for 38 paces, and then due south
- for 30 paces.
- What is the magnitude and direction of your total
- displacement ?
5Addition of Vectors
- Using components (A,B lie in x,y plane)
- C AB Ax Ay Bx By CxCy
- Cx and Cy are called vector components of C.
- They are two perpendicular vectors that are
parallel - to the x and y axis.
- Ax,Ay and Bx, By are vector components of A and
B.
6Scalar Components of a Vector (in 2 dim.)
- Vector components of vector A
- A Ax Ay
- Scalar components of vector A
- A Ax x Ay y
- Ax and Ay are called scalar
- components of A.
- x and y are unit vectors.
- Equivalently
- A(Ax,Ay)
- A is a vector pointing from the
- origin to the point with
- coordinates Ax,Ay.
7Scalar Components of a Vector (in 2 dim.)
- Scalar components of vector A
- A Ax x Ay y
- A, q known
- Ax A Cos q
- AyA Sin q
- Ax, Ay known
- A2(Ax )2(AY)2
- q Tan-1 Ay/Ax
8Addition of Vectors
- Using scalar components (A,B lie in x,y plane)
- C AB Ax x Ay y Bx x By y
Cx xCy y - 1. Determine scalar components of A and B.
- 2. Calculate scalar components of C
- Cx AxBx and CyAyBy
- 3. Calculate C and q
- C2(Cx )2(CY)2 q Tan-1 Cy/Cx
9Addition of Vectors
10Displacement and Distance
- Displacement is the vector that points from a
bodys initial position to its final position.
The length of is equal to the shortest distance
between the two positions. - ?x x x0
- The length of ?x is not the same as distance
traveled !
11Average Speed and Velocity
- Average velocity describes how the displacement
of an object changes over time - average velocity displacement/elapsed time
- v (x-x0) / (t-t0) ?x / ?t
-
- Average velocity also takes into account the
direction of - motion.
- The magnitude of v is not the same as the
average speed !
12Review of Concepts Chapter 2
- kinematics A description of motion
- position your coordinates
- displacement ?x change of position (vector)
- velocity rate of change of position (vector)
- average ?x/?t
- instantaneous slope of x vs. t
- acceleration rate of change of velocity
(vector) - average ?v/?t
13Free Fall - Symmetry
- At a given displacement along the path of motion
the - magnitude of the upward velocity is equal the
- magnitude of the downward velocity and they
point in - opposite directions
- vup - vdown
14Kinematics in Two DimensionsConstant Acceleration
- Consider an object which moves in the (x,y) plane
from the initial - position r0, at time t0 with velocity v0, with
constant acceleration. - position your coordinates (just r(x,y) in 2-D)
- displacement ?r r-r0 change of position
- velocity rate of change of position
- average ?r/?t
- instantaneous lim ?t-gt0 ?r/?t
- acceleration rate of change of velocity
- average ?v/?t
- instantaneous lim ?t-gt0 ?v/?t
- Same concepts as in one dimension !
- Equations of kinematics are derived for the x and
y components - separately. Same equations as in one dimension !
15Equations of Kinematics in 2 Dim.
16Eqs. of Kinematics in 2 Dim.
- The motions along the x and y directions are
completely - independent. They only share a common time.
- Three swimmers can swim equally fast relative to
the water. They have a race to see who can swim
across a river in the least time. Relative to
the water, Beth (B) swims perpendicular to the
flow, Ann (A) swims upstream, and Carly (C) swims
downstream. Which swimmer wins the race? - A) Ann
- B) Beth
- C) Carly
- Time to get across width of river /
y-component of velocity
correct
17Projectile Motion
- A flatbed railroad car is moving along a track at
constant - velocity. A passenger at the center of the car
throws a ball - straight up. Neglecting air resistance, where
will the ball land ? - 1. Forward of the center of the car
- 2. At the center of the car
- 3. Backward of the center of the car
correct
18Kinematics of Projectile Motion (t00)
- x direction motion with constant velocity gt
ax 0 - x x0 v0xt
- vx v0x
- y direction free fall gt ay - g -9.80 m/s
- y y0 v0y t - 1/2 g t2
- vy v0y g t
- vy2 v0y2 2 g (y-y0)
19Circular Motion
Centripetal acceleration
Acceleration is the result of a change in the
velocitys direction. In case of ac this change
is toward the center of the circular motion.
New Definitions frequency f, period T
The period T is the time required to travel once
around the circle, (i.e. to make one complete
revolution T 2 p R/v ) The Frequency f 1
/ T