Title: From the KP hierarchy to the Painlev
1From the KP hierarchy to the Painlevé equations
Painlevé Equations and Monodromy Problems Recent
Developments
- Saburo KAKEI (Rikkyo University)
- Joint work with Tetsuya KIKUCHI (University of
Tokyo)
22 September 2006
2Known Facts
- Fact 1
- Painlevé equations can be obtained as similarity
reduction of soliton equations. - Fact 2Many (pahaps all) soliton equations can be
obtained as reduced cases of Satos KP hierarchy.
3Similarity reduction of soliton equations
- E.g. Modified KdV equation Painlevé II
mKdV hierarchy
Modified KP hierarchy
mKdV eqn.
4Noumi-Yamada (1998)
Lie algebra Soliton eqs. ? Painlevé eqs.
mKdV ? Panlevé II
mBoussinesq ? Panlevé IV
3-reduced KP ? Panlevé V
n-reduced KP ? Higher-order eqs.
5Aim of this research
- Consider the multi-component cases.Multi-comp
onent KP hierarchy KP hierarchy with
matrix-coefficients
6From mKP hierarchy to Painlevé eqs.
mKP reduction Soliton eqs. Painlevé eqs.
1-component 2-reduced mKdV P II
1-component 3-reduced mBoussinesq P IV
1-component 4-reduced 4-reduced KP P V
1-component n-reduced n-reduced KP Higher-order eqs.Noumi-Yamada
2-component (1,1) NLS P IV Jimbo-Miwa
2-component (2,1) Yajima-Oikawa P V Kikuchi-Ikeda-K
3-component (1,1,1) 3-wave system P VI K-Kikuchi
3-component
7Relation to affine Lie algebras
realization mKP soliton Painlevé
Principal 1-component, 2-reduced mKdV P II
Homogeneous 2-component, (1,1)-reduced NLS P IV
Principal 1-component, 3-reduced mBoussinesq P IV
(2,1)-graded 2-component, (2,1)-reduced Yajima-Oikawa P V
Homogeneous 3-component, (1,1,1)-reduced 3-wave P VI
8Rational solutions of Painlevé IV
Schur polynomials Rational sols of P IV
- 1-component KP mBoussinesq P IV
3-core Okamoto polynomials - Kajiwara-Ohta, Noumi-Yamada
- 2-component KP derivative NLS P IV
rectangular Hermite polynomials - Kajiwara-Ohta, K-Kikuchi
9Aim of this research
- Consider the multi-component cases.
- Consider the meaning of similarity conditions at
the level of the (modified) KP hierarchy.
10Multi-component mKP hierarchy
- Shift operator
- Sato-Wilson operators
- Sato equations
111-component mKP hierarchy mKdV
2-reduction
(modified KdV eq.)
12Scaling symmetry of mKP hierarchy
Proposition 1 Define
as where satisfies Then
also solve the Sato
equations.
131-component mKP mKdV P II
2-reduction (mKP mKdV)
Similarity condition (mKdV P II)
142-component mKP NLS P IV
(1,1)-reduction (2c-mKP NLS)
Similarity condition (NLS P IV)
15Parameters in Painlevé equations
Parameters in similarity conditions
- mKdV case (P II)
- NLS case (P IV)
16Monodromy problem
Similarity condition (NLS P IV)
17Aim of this research
- Consider the multi-component cases.
- Consider the meaning of similarity conditions at
the level of the (modified) KP hierarchy. - Consider the 3-component case to obtain the
generic Painlevé VI.
18Painlevé VI as similarity reduction
- Three-wave interaction equations
Fokas-Yortsos, Gromak-Tsegelnik, Kitaev,
Duburovin-Mazzoco, Conte-Grundland-Musette,
K-Kikuchi - Self-dual Yang-Mills equation Mason-Woodhouse,
Y. Murata, Kawamuko-Nitta - Schwarzian KdV Hierarchy Nijhoff-Ramani-Grammati
cos-Ohta, Nijhoff-Hone-Joshi - UC hierarchy Tstuda, Tsuda-Masuda
- D4(1)-type Drinfeld-Sokolov hierarchy
Fuji-Suzuki - Nonstandard 2 2 soliton system M. Murata
19Painlevé VI as similarity reduction
Direct approach based on three-wave system
Fokas-Yortsos (1986) 3-wave PVI with
1-parameter Gromak-Tsegelnik (1989) 3-wave
PVI with 1-parameter Kitaev (1990)
3-wave PVI with 2-parameters
Conte-Grundland-Musette (2006) 3-wave
PVI with 4-parameters
(arXivnlin.SI/0604011)
20Our approach (arXivnlin.SI/0508021)
- 3-component KP hierarchy
- (1,1,1)-reduction
- gl3-hierarhcy
- Similarity reduction
- 33 monodromy problem
- Laplace transformation
- 22 monodromy problem
213-component KP 3-wave system
Compatibiliry
223-component KP 3-wave system
(1,1,1)-condition
3-wave system
233-component KP 3 3 system
(1,1,1)-reduction
Similarity condition
243-component KP 3 3 system
Similarity condition
253-component KP 3 3 system
263 3 2 2
Harnad, Dubrovin-Mazzocco, Boalch
Laplace transformation with the condition
27Our approach (arXivnlin.SI/0508021)
- 3-component KP hierarchy
- (1,1,1)-reduction
- gl3-hierarhcy
- Similarity reduction
- 33 monodromy problem
- Laplace transformation
- 22 monodromy problem
P VI
28q-analogue (arXivnlin.SI/0605052)
3-component q-mKP hierarchy
(1,1,1)-reduction q-gl3-hierarhcy
q-Similarity reduction 33 connection
problem q-Laplace transformation 22
connection problem
q-P VI
29References
- SK, T. Kikuchi, The sixth Painleve equation as
similarity reduction of gl3 hierarchy, arXiv
nlin.SI/0508021 - SK, T. Kikuchi, A q-analogue of gl3 hierarchy
and q-Painleve VI, arXivnlin.SI/0605052 - SK, T. Kikuchi,Affine Lie group approach to a
derivative nonlinear Schrödinger equation and its
similarity reduction,Int. Math. Res. Not. 78
(2004), 4181-4209 - SK, T. Kikuchi,Solutions of a derivative
nonlinear Schrödinger hierarchy and its
similarity reduction,Glasgow Math. J. 47A (2005)
99-107 - T. Kikuchi, T. Ikeda, SK, Similarity reduction
of the modified Yajima-Oikawa equation,J. Phys.
A36 (2003) 11465-11480