From the KP hierarchy to the Painlev - PowerPoint PPT Presentation

About This Presentation
Title:

From the KP hierarchy to the Painlev

Description:

Painlev Equations and Monodromy Problems: Recent Developments From the KP hierarchy to the Painlev equations Saburo KAKEI (Rikkyo University) – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 30
Provided by: Saburo8
Category:

less

Transcript and Presenter's Notes

Title: From the KP hierarchy to the Painlev


1
From the KP hierarchy to the Painlevé equations
Painlevé Equations and Monodromy Problems Recent
Developments
  • Saburo KAKEI (Rikkyo University)
  • Joint work with Tetsuya KIKUCHI (University of
    Tokyo)

22 September 2006
2
Known Facts
  • Fact 1
  • Painlevé equations can be obtained as similarity
    reduction of soliton equations.
  • Fact 2Many (pahaps all) soliton equations can be
    obtained as reduced cases of Satos KP hierarchy.

3
Similarity reduction of soliton equations
  • E.g. Modified KdV equation Painlevé II

mKdV hierarchy
Modified KP hierarchy
mKdV eqn.
4
Noumi-Yamada (1998)
Lie algebra Soliton eqs. ? Painlevé eqs.
mKdV ? Panlevé II
mBoussinesq ? Panlevé IV
3-reduced KP ? Panlevé V

n-reduced KP ? Higher-order eqs.
5
Aim of this research
  • Consider the multi-component cases.Multi-comp
    onent KP hierarchy KP hierarchy with
    matrix-coefficients

6
From mKP hierarchy to Painlevé eqs.
mKP reduction Soliton eqs. Painlevé eqs.
1-component 2-reduced mKdV P II
1-component 3-reduced mBoussinesq P IV
1-component 4-reduced 4-reduced KP P V
1-component n-reduced n-reduced KP Higher-order eqs.Noumi-Yamada
2-component (1,1) NLS P IV Jimbo-Miwa
2-component (2,1) Yajima-Oikawa P V Kikuchi-Ikeda-K
3-component (1,1,1) 3-wave system P VI K-Kikuchi
3-component
7
Relation to affine Lie algebras
realization mKP soliton Painlevé
Principal 1-component, 2-reduced mKdV P II
Homogeneous 2-component, (1,1)-reduced NLS P IV
Principal 1-component, 3-reduced mBoussinesq P IV
(2,1)-graded 2-component, (2,1)-reduced Yajima-Oikawa P V
Homogeneous 3-component, (1,1,1)-reduced 3-wave P VI
8
Rational solutions of Painlevé IV
Schur polynomials Rational sols of P IV
  • 1-component KP mBoussinesq P IV
    3-core Okamoto polynomials
  • Kajiwara-Ohta, Noumi-Yamada
  • 2-component KP derivative NLS P IV
    rectangular Hermite polynomials
  • Kajiwara-Ohta, K-Kikuchi

9
Aim of this research
  • Consider the multi-component cases.
  • Consider the meaning of similarity conditions at
    the level of the (modified) KP hierarchy.

10
Multi-component mKP hierarchy
  • Shift operator
  • Sato-Wilson operators
  • Sato equations

11
1-component mKP hierarchy mKdV
2-reduction
(modified KdV eq.)
12
Scaling symmetry of mKP hierarchy
Proposition 1 Define
as where satisfies Then
also solve the Sato
equations.
13
1-component mKP mKdV P II
2-reduction (mKP mKdV)
Similarity condition (mKdV P II)
14
2-component mKP NLS P IV
(1,1)-reduction (2c-mKP NLS)
Similarity condition (NLS P IV)
15
Parameters in Painlevé equations
Parameters in similarity conditions
  • mKdV case (P II)
  • NLS case (P IV)

16
Monodromy problem
Similarity condition (NLS P IV)
17
Aim of this research
  • Consider the multi-component cases.
  • Consider the meaning of similarity conditions at
    the level of the (modified) KP hierarchy.
  • Consider the 3-component case to obtain the
    generic Painlevé VI.

18
Painlevé VI as similarity reduction
  • Three-wave interaction equations
    Fokas-Yortsos, Gromak-Tsegelnik, Kitaev,
    Duburovin-Mazzoco, Conte-Grundland-Musette,
    K-Kikuchi
  • Self-dual Yang-Mills equation Mason-Woodhouse,
    Y. Murata, Kawamuko-Nitta
  • Schwarzian KdV Hierarchy Nijhoff-Ramani-Grammati
    cos-Ohta, Nijhoff-Hone-Joshi
  • UC hierarchy Tstuda, Tsuda-Masuda
  • D4(1)-type Drinfeld-Sokolov hierarchy
    Fuji-Suzuki
  • Nonstandard 2 2 soliton system M. Murata

19
Painlevé VI as similarity reduction
Direct approach based on three-wave system
Fokas-Yortsos (1986) 3-wave PVI with
1-parameter Gromak-Tsegelnik (1989) 3-wave
PVI with 1-parameter Kitaev (1990)
3-wave PVI with 2-parameters
Conte-Grundland-Musette (2006) 3-wave
PVI with 4-parameters
(arXivnlin.SI/0604011)
20
Our approach (arXivnlin.SI/0508021)
  • 3-component KP hierarchy
  • (1,1,1)-reduction
  • gl3-hierarhcy
  • Similarity reduction
  • 33 monodromy problem
  • Laplace transformation
  • 22 monodromy problem

21
3-component KP 3-wave system
Compatibiliry
22
3-component KP 3-wave system
(1,1,1)-condition
3-wave system
23
3-component KP 3 3 system
(1,1,1)-reduction
Similarity condition
24
3-component KP 3 3 system
Similarity condition
25
3-component KP 3 3 system
26
3 3 2 2
Harnad, Dubrovin-Mazzocco, Boalch
Laplace transformation with the condition
27
Our approach (arXivnlin.SI/0508021)
  • 3-component KP hierarchy
  • (1,1,1)-reduction
  • gl3-hierarhcy
  • Similarity reduction
  • 33 monodromy problem
  • Laplace transformation
  • 22 monodromy problem

P VI
28
q-analogue (arXivnlin.SI/0605052)
3-component q-mKP hierarchy
(1,1,1)-reduction q-gl3-hierarhcy
q-Similarity reduction 33 connection
problem q-Laplace transformation 22
connection problem
q-P VI
29
References
  • SK, T. Kikuchi, The sixth Painleve equation as
    similarity reduction of gl3 hierarchy, arXiv
    nlin.SI/0508021
  • SK, T. Kikuchi, A q-analogue of gl3 hierarchy
    and q-Painleve VI, arXivnlin.SI/0605052
  • SK, T. Kikuchi,Affine Lie group approach to a
    derivative nonlinear Schrödinger equation and its
    similarity reduction,Int. Math. Res. Not. 78
    (2004), 4181-4209
  • SK, T. Kikuchi,Solutions of a derivative
    nonlinear Schrödinger hierarchy and its
    similarity reduction,Glasgow Math. J. 47A (2005)
    99-107
  • T. Kikuchi, T. Ikeda, SK, Similarity reduction
    of the modified Yajima-Oikawa equation,J. Phys.
    A36 (2003) 11465-11480
Write a Comment
User Comments (0)
About PowerShow.com