Title: Diapositiva 1
1ACOUSTIC EMISSION AND STRUCTURAL TRANSITIONS
Lluís Mañosa Departament dEstructura i
Constituents de la Matèria Facultat de
Física lluis_at_ecm.ub.es
Erell Bonnot Francisco José Pérez-Reche Antoni
Planes Eduard Vives
2Acoustic Emission (AE)
? Transient elastic waves resulting from
localized internal microdisplacements
taking place in a solid (American Society for
Testing and Materials, ASTM) .
? Technique to measure these elastic waves.
First EA measurements J. Kaiser (1950)
3AE Fundamentals
Equation of motion
(Einstein notation)
along the n direction
for a point force
The solution is the Green funcion
Uniqueness theorem Reciprocity theorem
4Displacement field for body forces f throughout
V and to boundary conditions on S
5Discontinuities across an internal surface
? much smaller than x
6Usual assumption
No body forces
SEISMIC MOMENT
which yields
7(No Transcript)
8DETECTION OF AE WAVES
Detectability
Typically Dislocation propagating 10?m at
3000m/s 100?m at 300m/s Crack area
(propagating at 1000 m/s) 10 ?m2 Phase
change 10 ?m3
9TRANSDUCERS
Optical (laser), Electromagnetic, Piezoelectric
Acoustic coupling
Displacement
Conical broad band
Damped piezoelectric
Piezoelectric
10Transducer calibration
Breaking pencil lead (0.3mm thick)
11TYPES OF AE SIGNALS
Burst
Continuous
12AE Detection
Ring-down counting Count rate
Distributions amplitude, duration,
RESSONANT
RMS Power and energy
Frequency spectrum
Source characterization
BROAD BAND
13SELECTED EXPERIMENTAL RESULTS
1. Broad band detection
2. Ressonant detection
14Application to martensitic transformations
Ll. Mañosa, et al Appl. Phys. Lett. 54, 2574
(1989) Ll. Mañosa, et al. Acta Metall. Mater. 38
1635 (1990)
Kinematics
Radiation pattern (spatial information)
15RADIATION PATTERN
Longitudinal waves
Shear waves
perpendicular to
and
KINEMATICS
16Thermoelastic martensitic transformation
Only longitudinal waves
Cubic single crystal (Cu-Zn-Al) with faces
parallel to (111), (-102) and (2-31)
planes Trained ? activated martensite variant
(011)lt0-1 1gt
Shear mechanism ? (0,1,1)
n(0,-1,1) Volume mechanism ? (0,1,1)
n(0,1,1)
17Predicted radiation pattern
EXPERIMENT Simultaneous detection on four
directions.
Predominant mechanism shear
18KINEMATICS
Model Fault with unidirectional propagation
19 ? depends on the measurement direction ?
DOPPLER EFFECT
EXPERIMENT Simultaneous detection at opposite
faces
Source location (depth, z)
Fault length
Fault velocity
20Broad-band detection 1.- Low sensitivity, 2.-
Complex experimental set-up 3.- Difficult
interpretation
Most studies use ressonant detection
21AE as a sensitive probe
Bell sounds ? Something happens!!
Monitoring large structures oil plants, rock
mines, tunnels, underground caverns, etc
Detection of phase transitions
Martensitic transition in Cu-Zn-Al
A.Planes et al, Phys. Stat. Sol (a) 66, 717 (1981)
Heat flow
Acoustic emission (count rate)
22NUCLEATION
Extreme sensitivity to small transforming
volumes!!
Martensitic transformation In Fe-30Ni. J.
Galligan, T. Garosshen, Nature 274, 674 (1978)
23MARTENSITIC TRANSFORMATION IN Cu-BASED
SHAPE-MEMORY ALLOYS
Step like experiments ?T0.2K ?t4hours
Cu-Al-Ni
Cu-Zn-Al
ATHERMAL
ISOTHERMAL
Perez-Reche et al, PRL 87, 195701 (2001)
24EXPERIMENTS REVEALING THE ATHERMAL CHARACTER OF A
PHASE TRANSITION
__________________________________________________
__________
Driving rate dependence (cooling)
Perez-Reche et al, PRL 87, 195701 (2001)
Cu-Zn-Al
Cu-Al-Ni
? (Hz)
?/T (K-1)
25STATISTICAL ANALYSIS OF AE SIGNALS
Source location
Creep deformation of ice (J. Weiss, D. Marsan,
Science 299, 80 (2003))
Experiment 5 piezoelectric transucers frozen on
an ice crystal subjected to uniaxial load.
1.- Clustering of dislocation avalanches 2.-
Migration of dislocation avalanches
26STATISTICAL ANALYSIS OF AE SIGNALS
Fracture by H precipitation in Nb G. Cannelli et
al. PRL 70, 3923 (1993)
AE from paper fracture L.I Salminen et al. PRL
89,185503 (2002)
Dislocation motion in ice. MC Miguel et al.
Nature 410, 667 (2001).
AE from volcanic rocks P.Diodati et al. PRL 67,
2239 (1991)
27PHASE TRANSISIONS
Martensitic transition in Cu-based shape memory
alloys
E. Vives et al PRL 72, 1694 (1994)
Ll.Carrillo et al PRL 81, 1889 1694 (1998)
Magnetostructural transition in giant
magnetocaloric Gd-Si-Ge Pérez-Reche et al. PRB
submitted.
28TYPICAL AE DETECTION SYSTEM
Electric signal
Piezoelectric transducer (PZT)
Acoustic source
Peltier element
29DETECTION OF A.E. EXPERIMENTAL SET-UP
30RESULTS ON THE MARTENSITIC TRANSITION IN Cu-BASED
ALLOYS
1. Reproducibility of the transition (mesoscale)
training.
Cu-Zn-Al
Correlation function
31Cu-Al-Mn
32Cu-Al-Mn
33REPRODUCIBILITY (microscale
C. Picornell et al. Thermochim. Acta 113, 171
(1987)
342. Effect of driving rate
F.J. Pérez-Reche et al. PRL 93, 195701 (2004)
35SUMMARY
AE very sensitive and powerful technique for
fast motion
Microscopic information spatial and temporal
Adequate to follow nucleation and kinetics of
phase (structural) transitions
Particularly suitable to study avalanche-mediated
processes
36Selected references
- ? J.A. Hudson, The Excitation and propagation of
elastic waves, - Cambridge Univ. Press (1980).
- ? K. Aki, P.G. Richards, Quantitative Seismology,
W.H. Freeman and Company (1980). - ? C.B. Scruby, Quantitative Acoustic emission
techniques, in Research Techniques - in Nondestructive Testing, Vol III, Ed. By R.S.
Sharpe, Academic Press, 1985. - ? Acoustic emission Beyond the Millennium, Ed.
T. Kishi, M. Ohtsu, S. Yuyama, - Elsevier (2000).
- C.B. Scruby, J. Phys. E Sci. Instrum. 20, 946
(1987). - Nondestructive testing techniques, Ed. D.E. Bray
and D. McBride, - John Wiley and Sons, INC (1992).
THANKS for the attention
37(No Transcript)
38MICROSCOPIC MEASUREMENTS OF AVALANCHES
__________________________________________________
__________
Vives et al., PRL, 72, 1694 (1994) Carrillo et
al. PRL, 81, 1889 (1998)
Structural transition (martensitic) BCC ? close
packed stress- or T- driven Acoustic emission
pulse detection counting
__________________________________________________
__________
MULTIMAT. Kick-off Meeting. Introductory Courses.
Leipzig, October 26-30 2004.
39Uniqueness theorem The displacement u through
the volume V with surface S is uniquely Determined
after a time t0 by the initial values of
displacment and particle velocity at t0,
throughout V and by values at all times t?t0 of
(i) the body forces f and the heat supplied
throughout V (ii) the tractions T over any part
S1 of S and (iii) the displacement over the
remainder S2 of S, with S1S2S