Title: SINAPSIS
1SINAPSIS
2(No Transcript)
3(No Transcript)
4Qué libera la vesícula sináptica? Cómo recibe
al mensajero la neurona postsináptica?
5Dos clasesdereceptores para los NT A. Receptores
inotrópicos. Receptores que unen el NT y ellos
mismos sonun canal iónico. B. Receptores
metabotrópicos. Receptores que unen el NT y
através de ProteinasG (proteinas que unen GTP)
regulan actividad de canales ionicos
6Receptores inotrópicos. Receptor nicotínico de
ACh-Son diferentes de los canales
voltaje-dependientesdel Na y del K canal grande
que permite el paso de ambos Na y Ka favor de
gradiente.
7- Neurotransmision mediada por segundos
mensajeros-Diseño - ligando-receptor transductor (proteinaG)
-efector primario (adenilciclasa) mensajero
secundario (AMPc) -efector secundario-
proteinkisana-respuesta celular
8- Efectode lafosforilaciónde proteinas
- A. Proteinkinasa fosforila las proteinas de un
canal de K-apertura canal paso de K propagación
del potencial sináptico (respuestaenminutos) - B. Proteinkinasa fosforila proteinas de
transcripcion (reguladoras) regulación de
expresión genica (reprimiendo y/o expresando
genes). Respuesta tardía y sostenida en el
tiempo.
9Neurotransmisores derivados de aminoácidos y
neuropéptidos. Receptores Neurotransmisión y
neuromodulación
- 1. Sinápsisquímica implica
- a.síntesis del neurotransmisor
- b.liberacióndelneurotransmisor
- c.interacción NT-receptor
- d.remoción del NT.
- 2.Conceptode NT
- Sustancia liberada en la sinapsis por una neurona
y que afecta a otra célula de una manera
especifica. Principio de Dale-Ecclesactualizadoun
a neurona hace uso de la misma combinaciónde
mensajeros quimicos entodas sus terminaciones
sinapticas. - El sistema nervioso utiliza dos clases de
mensajeros químicos - a. moléculas pequeñas
- b. neuropéptidos.
10- Schematic representation of the life cycle of a
classical neurotransmitter. After accumulation of
a precursor amino acid into the neuron (1), the
amino acid precursor is metabolized sequentially
(2) to yield the mature transmitter. The
transmitter is then accumulated into vesicles by
the vesicular transporter (3), where it is poised
for release and protected from degradation. Once
released, the transmitter can interact with
postsynaptic receptors (4) orautoreceptors(5)
that regulate transmitter release, synthesis, or
firing rate. Transmitter actions are terminated
by means of a high-affinity membrane transporter
(6) that is usually associated with the neuron
that released the transmitter. Alternatively,tranm
itteractions may be terminated by diffusion from
the active sites (7) or accumulation into glia
through a membrane transporter (8). When the
transmitter is taken up by the neuron, it is
subject to metabolic inactivation (9).
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22Sinapsis Noradrenergica
23Sinapsis noradrenergica
- Characteristics of a norepinephrine
(NE)-containing catecholamineneuron. Tyrosine
(Tyr) is accumulated by the neuron and is then
metabolized sequentially by tyrosine hydroxylase
(TH) and L-aromatic aminoacid decarboxylase
(L-AADC) to dopamine (DA). The DA is then taken
up through the vesicular monoamine transporter
into vesicles. In DA neurons, this is the final
step. However, in this NE-containing cell, DA is
metabolized to NE by dopamine-b-hydroxylase
(DBH), which is found in the vesicle. Once NE is
released, it can interact with postsynaptic
noradrenergic receptors or presynaptic
noradrenergic autoreceptors. The accumulation of
NE by the high-affinity membrane NE transporter
(NET) terminates the actions of NE. Once taken
back up by the neuron, NE can be metabolized to
inactive compounds (DHPG) by degradative enzymes
such as monoamineoxidase (MAO) or taken back up
by the vesicle.
24Sinapsis Seroninergica
25Sinapsis serotoninergica
- Aminas derivada de triptofamo (indolaminas-Seroto
nina(SER), melatonina-Serotonina - triptófanotriptofano hidroxilasa--gt 5-Hidroxi
triptofano5-Hidroxi triptofano
decarboxilasa--gt 5-HT (SER) Serotonergic neuron.
Tryptophan(Trp) in the neuron is metabolized
sequentially bytryptophan hydroxylase (TrypOHase)
and L-AADC to yield serotonin (5-HT). 5-HT is
accumulated by the vesicular monoamine
transporter. When released, 5-HT can interact
with both postsynaptic receptors andpresynaptic
autoreceptors. 5-HT is taken up by the
high-affinity 5-HT transporter (SERT), and once
inside the neuron it can be reaccumulated by
vesicular transporter or inactivated metabolica
26Acetilocolina
27Production of acetylcholine
(choline acetyltransferase)
(acetylcholinesterase)
Breakdown of acetylcholine
28Sinapsis colinergica
- Acetylcholine (ACh) synthesis, release, and
termination of action are shown.
Acholinetransporter accumulatescholine. The
enzymecholine acetyltransferase(ChAT) acetylates
thecholineusing acetyl-CoA(Ac-CoA) to form the
transmitterACh, which is accumulated into
vesicles by the vesicular transporter. The
releasedAChmay interact with postsynapticmuscarini
cor nicotiniccholinergicreceptors or can be taken
up into the neuron by acholinetransporter.
Acetylcholine can be degraded after release by
the enzyme acetylcholine esterase (AChE).
29(No Transcript)
30Sinapsis Gabaérgica
Alpha-Ketoglutarate
GABA-oxoglutarate transaminase (GABA-T)
Glutamate
Glutamic acid decarboxylase (GAD)
GABA
31(No Transcript)
32(No Transcript)
33F I N