SINAPSIS - PowerPoint PPT Presentation

About This Presentation
Title:

SINAPSIS

Description:

SINAPSIS Dos clasesdereceptores para los NT A. Receptores inotr picos. Receptores que unen el NT y ellos mismos son un canal i nico. B. Receptores metabotr picos. – PowerPoint PPT presentation

Number of Views:140
Avg rating:3.0/5.0
Slides: 34
Provided by: Hard68
Category:

less

Transcript and Presenter's Notes

Title: SINAPSIS


1
SINAPSIS
2
(No Transcript)
3
(No Transcript)
4
Qué libera la vesícula sináptica? Cómo recibe
al mensajero la neurona postsináptica?
5
Dos clasesdereceptores para los NT A. Receptores
inotrópicos. Receptores que unen el NT y ellos
mismos sonun canal iónico. B. Receptores
metabotrópicos. Receptores que unen el NT y
através de ProteinasG (proteinas que unen GTP)
regulan actividad de canales ionicos
6
Receptores inotrópicos. Receptor nicotínico de
ACh-Son diferentes de los canales
voltaje-dependientesdel Na y del K canal grande
que permite el paso de ambos Na y Ka favor de
gradiente.
7
  • Neurotransmision mediada por segundos
    mensajeros-Diseño
  • ligando-receptor transductor (proteinaG)
    -efector primario (adenilciclasa) mensajero
    secundario (AMPc) -efector secundario-
    proteinkisana-respuesta celular

8
  • Efectode lafosforilaciónde proteinas
  • A. Proteinkinasa fosforila las proteinas de un
    canal de K-apertura canal paso de K propagación
    del potencial sináptico (respuestaenminutos)
  • B. Proteinkinasa fosforila proteinas de
    transcripcion (reguladoras) regulación de
    expresión genica (reprimiendo y/o expresando
    genes). Respuesta tardía y sostenida en el
    tiempo.

9
Neurotransmisores derivados de aminoácidos y
neuropéptidos. Receptores Neurotransmisión y
neuromodulación
  • 1. Sinápsisquímica implica
  • a.síntesis del neurotransmisor
  • b.liberacióndelneurotransmisor
  • c.interacción NT-receptor
  • d.remoción del NT.
  • 2.Conceptode NT
  • Sustancia liberada en la sinapsis por una neurona
    y que afecta a otra célula de una manera
    especifica. Principio de Dale-Ecclesactualizadoun
    a neurona hace uso de la misma combinaciónde
    mensajeros quimicos entodas sus terminaciones
    sinapticas.
  • El sistema nervioso utiliza dos clases de
    mensajeros químicos
  • a. moléculas pequeñas
  • b. neuropéptidos.

10
  • Schematic representation of the life cycle of a
    classical neurotransmitter. After accumulation of
    a precursor amino acid into the neuron (1), the
    amino acid precursor is metabolized sequentially
    (2) to yield the mature transmitter. The
    transmitter is then accumulated into vesicles by
    the vesicular transporter (3), where it is poised
    for release and protected from degradation. Once
    released, the transmitter can interact with
    postsynaptic receptors (4) orautoreceptors(5)
    that regulate transmitter release, synthesis, or
    firing rate. Transmitter actions are terminated
    by means of a high-affinity membrane transporter
    (6) that is usually associated with the neuron
    that released the transmitter. Alternatively,tranm
    itteractions may be terminated by diffusion from
    the active sites (7) or accumulation into glia
    through a membrane transporter (8). When the
    transmitter is taken up by the neuron, it is
    subject to metabolic inactivation (9).

11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
Sinapsis Noradrenergica
23
Sinapsis noradrenergica
  • Characteristics of a norepinephrine
    (NE)-containing catecholamineneuron. Tyrosine
    (Tyr) is accumulated by the neuron and is then
    metabolized sequentially by tyrosine hydroxylase
    (TH) and L-aromatic aminoacid decarboxylase
    (L-AADC) to dopamine (DA). The DA is then taken
    up through the vesicular monoamine transporter
    into vesicles. In DA neurons, this is the final
    step. However, in this NE-containing cell, DA is
    metabolized to NE by dopamine-b-hydroxylase
    (DBH), which is found in the vesicle. Once NE is
    released, it can interact with postsynaptic
    noradrenergic receptors or presynaptic
    noradrenergic autoreceptors. The accumulation of
    NE by the high-affinity membrane NE transporter
    (NET) terminates the actions of NE. Once taken
    back up by the neuron, NE can be metabolized to
    inactive compounds (DHPG) by degradative enzymes
    such as monoamineoxidase (MAO) or taken back up
    by the vesicle.

24
Sinapsis Seroninergica
25
Sinapsis serotoninergica
  • Aminas derivada de triptofamo (indolaminas-Seroto
    nina(SER), melatonina-Serotonina
  • triptófanotriptofano hidroxilasa--gt 5-Hidroxi
    triptofano5-Hidroxi triptofano
    decarboxilasa--gt 5-HT (SER) Serotonergic neuron.
    Tryptophan(Trp) in the neuron is metabolized
    sequentially bytryptophan hydroxylase (TrypOHase)
    and L-AADC to yield serotonin (5-HT). 5-HT is
    accumulated by the vesicular monoamine
    transporter. When released, 5-HT can interact
    with both postsynaptic receptors andpresynaptic
    autoreceptors. 5-HT is taken up by the
    high-affinity 5-HT transporter (SERT), and once
    inside the neuron it can be reaccumulated by
    vesicular transporter or inactivated metabolica

26
Acetilocolina
27
Production of acetylcholine
(choline acetyltransferase)
(acetylcholinesterase)
Breakdown of acetylcholine
28
Sinapsis colinergica
  • Acetylcholine (ACh) synthesis, release, and
    termination of action are shown.
    Acholinetransporter accumulatescholine. The
    enzymecholine acetyltransferase(ChAT) acetylates
    thecholineusing acetyl-CoA(Ac-CoA) to form the
    transmitterACh, which is accumulated into
    vesicles by the vesicular transporter. The
    releasedAChmay interact with postsynapticmuscarini
    cor nicotiniccholinergicreceptors or can be taken
    up into the neuron by acholinetransporter.
    Acetylcholine can be degraded after release by
    the enzyme acetylcholine esterase (AChE).

29
(No Transcript)
30
Sinapsis Gabaérgica
Alpha-Ketoglutarate
GABA-oxoglutarate transaminase (GABA-T)
Glutamate
Glutamic acid decarboxylase (GAD)
GABA
31
(No Transcript)
32
(No Transcript)
33
F I N
Write a Comment
User Comments (0)
About PowerShow.com