Title: Folie%201
12.34
2.34 Modelle 2.341 Ein einfaches
Energiebilanz Modell (EBM) 2.342 Komplexere
Modele 2.343 Virtueller Gastvortrag von
Prof. Broccoli, USA
Atmospheric General Circulation Modeling
Coupled General
Circulation Modeling 2.344 Übersicht über
komplexere Modelle
GHG Greenhouse Gas
2Goto spielen
32.341
A simple model of the greenhouse effect
FS 1370 W/m2 solar constant F0 1/4
(1-A) FS
?tFg
thermal transmittance ?t
Ta
Atmosphere
Solar transmittance ?s
thermal emittance (1- ?t )
Fa (1- ?t ) ? Ta4
Fg ? Tg4
?sF0
Fg
QuelleD.G. AndrewsAn introduction to
Atmospherical Physics fig.1.2
4A simple model of the greenhouse effect
Bilance at the top of the atmosphere
F0 Fa ?tFg (1)
?tFg
thermal transmittance ?t
Atmosphere
Ta
Solar transmittance ?s
thermal emittance (1- ?t ) Kirchhoffs law
?sF0
Bilance at the ground ?sF0 Fa Fg (2)
Fg
QuelleD.G. AndrewsAn introduction to
Atmospherical Physics fig.1.2
5A simple model of the greenhouse effect
Bilance at the top of the atmosphere (1) F0
Fa ?tFg
Bilance at the ground (2)
Fg Fa ?sF0
Fa aus (1) in (2) einsetzen Fg F0 - ?tFg
?sF0
Fg F0 (1 ?s ) / (
1 ?t) andererseits gilt Fg
? Tg4
Also ? Tg4 F0 (1 ?s ) / ( 1 ?t)
QuelleD.G. AndrewsAn introduction to
Atmospherical Physics fig.1.2
6A simple model of the greenhouse effect
Also ? Tg4 F0 (1 ?s ) / ( 1 ?t)
Zahlenwerte ?s 0,9 ?t 0,2
Albedo A0,3 ferner F0 1/4 (1-A) FS
0,7 1370/ 4 0,7 340 240 W/m2
? 5,67 10- 8 Wm-2K-4
Tg 286 K
The close agreement with Tg 288 K is partly
fortuitous, since in reality non radiative
processes also contribute to the energy balance
QuelleD.G. AndrewsAn introduction to
Atmospherical Physics fig.1.2
7Goto spielen
82.342 Komplexere Modelle
Komplexere Modelle
9Geographic resolution characteristic of climate
Models of the generations of climate models used
in the IPCC Assessment Re-ports FAR
(IPCC, 1990), SAR (IPCC, 1996), TAR (IPCC,
2001a), and AR4 (2007). The figures above show
how successive generations of these global models
increasingly resolved northern Europe. These
illustrations are representative of the most
detailed horizontal resolution used for
short-term climate simulations. The
century-long simulations cited in IPCC Assessment
Reports after the FAR were typically run with the
previous generations resolution. Vertical
resolution in both atmosphere and ocean models is
not shown, but it has increased comparably
with the horizontal resolution, beginning
typically with a single-layer slab ocean and ten
atmospheric layers in the FAR and progressing to
about thirty levels in both atmosphere and
ocean.
Quelle IPCC-AR4-wg1 (2007), Figure 1.4
10Geographic resolution characteristic of climate
Models
Quelle IPCC-AR4-wg1 (2007), Figure 1.4
11aktueller Stand (2007)
30 levels in both atmosphere and ocean.
Quelle IPCC-AR4-wg1 (2007), Figure 1.4
12Hierarchie der gekoppelten Modelle für Ozean und
Atmosphäre nach Raumdimensionen geordnet
Quelle Prof. T. Stocker Einführung in die
Klimamodellierung, Vorlesungsskript WS
2002/2003 p.19 Tab.2.1
13Erläuterungen zur Tabelle 2.1 (Hierarchie der
gekoppelten Modelle für Ozean und Atmosphäre
) Die Richtung der Dimensionen ist in
Klammern spezifiziert
(lat latitude, long longitude, z
vertikal) 2.5d mehrere
2-dimensionale Ozeanbecken, die im südlichen
Ozean verbunden sind Weitere viel verwendete
Abkürzungen EBM energy
balance model, AGCM atmospheric
general circulation model, OGCM
ocean general circulation model .
QG für quasi-geostrophisch, SST sea surface
temperature. In kursiv sind einige
Modellbeispiele genannt (entweder Autoren oder
Modellbezeichnung). EMICS Das grau
schattierte Gebiet enthält Klimamodelle
reduzierter Komplexität (auch Earth System
Models of Intermediate Complexity, EMICs
genannt), mit denen lange Integrationen
durchgeführt werden können
(mehrere 103 106 Jahre,
oder grosse ensembles).
Quelle Prof. T. Stocker Einführung in die
Klimamodellierung, Vorlesungsskript WS
2002/2003 p.19 Tab.2.1
14Klimamodelle sind gar nicht so einfach zu
verstehen und zu beurteilen
(hmm..- was
tun?) Daher 1. Hinweis auf ausführliche
Vorlesungen im www und auf gedruckte
Publikationen. 2. Virtueller Gastvortrag
Prof. Broccoli, Rutgers University, New Jersey,
USA
151. Ausgewählte Internetquellen
16Prof. Stocker, Bern
http//www.climate.unibe.ch/ stocker/papers/skrip
t0203.pdf zum Original
17Inhalt der Vorlesung von Prof. Stocker 1
Einführung....................
..................................................
..................................................
.....1 1.1 Ziel der Vorlesung und weiterführende
Literatur ........................................
........................1 1.2 Das
Klimasystem.......................................
..................................................
.........................3 1.3 Aufgaben und
Grenzen der Klimamodellierung ....................
..............................................6 1.
4 Historische Entwicklung ........................
..................................................
............................9 1.5 Einige aktuelle
Beispiele zur Klimamodellierung
..................................................
...........13 1.6 Zusammenfassung.................
..................................................
. ...........................17 2
Modellhierarchie und einfache Klimamodelle
..................................................
................19 2.1 Hierarchie der
physikalischen Klimamodelle ......................
..............................................19 2
.2 Punktmodell der Strahlungsbilanz
..................................................
..................................27 2.3
Numerische Lösung einer gewöhnlichen
Differentialgleichung 1. Ordnung .............
.......30 2.4 Klimasensitivität im
Energiebilanzmodell ..............................
..................................... ......34 3
Advektion, Diffusion und Konvektion...............
..................................................
...............41 3.1 Advektion...................
..................................................
..................................................
...41 3.2 Diffusion...............................
..................................................
...........................................42 3.3
Konvektion........................................
..................................................
..............................43 3.4
Advektions-Diffusionsgleichung und
Kontinuitätsgleichung.......................
.....................44 3.5 Numerische Lösung der
Advektions-Gleichung .............................
...................................45 3.6 Weitere
Verfahren zur Lösung der Advektions-Gleichung
.....................................
..........53 3.7 Numerische Lösung der
Advektions-Diffusions Gleichung
.....................................
.........59 3.8 Numerische Diffusion
..................................................
..................................................
...59 4 Energietransport im Klimasystem und
seine Parametrisierung ...........................
..........61 4.1 Grundlagen.......................
..................................................
...............................................61
4.2 Wärmetransport in der Atmosphäre
..................................................
................................62 4.3
Breitenabhängiges Energiebilanzmodell.............
..................................................
.............65 4.4 Wärmetransport im Ozean
..................................................
..............................................66 .
..................................................
....
18 5 Anfangswert- und Randwertprobleme..............
..................................................
...............71 5.1 Allgemeine Grundlagen
..................................................
..................................................
.71 5.2 Direkte numerische Lösung der
Poissongleichung .................................
...........................72 5.3 Iterative
Verfahren ........................................
..................................................
...................74 5.4 Successive
Overrelaxation (SOR)..............................
..................................................
......75 6 Gross-skalige Zirkulation im
Ozean.............................................
......................................77 6.1 Die
Bewegungsgleichungen..............................
..................................................
......... .....77 6.2 Flachwassergleichungen als
Spezialfall ......................................
......................................80 6.3
Verschiedene Typen von Gittern in
Klimamodellen.....................................
................... ..81 6.4 Spektralmodelle.....
..................................................
..................................................
........85 6.5 Windgetriebene Strömung im Ozean
(Stommel Modell) .................................
............. ...87 6.6 Potentielle Vorticity
eine wichtige Erhaltungsgrösse ...................
................................. ..93 7
Gross-skalige Zirkulation in der Atmosphäre
..................................................
................97 7.1 Zonale und meridionale
Zirkulation ......................................
........................................
....97 7.2 Das Lorenz-Saltzman Modell
..................................................
........................................102 8
Atmosphäre-Ozean Wechselwirkung...................
..................................................
..........109 8.1 Kopplung von physikalischen
Modellkomponenten.................................
.................. .....109 8.2 Thermische
Randbediungungen..................................
................................................
.....110 8.3 Hydrologische Randbedingungen........
..................................................
..................... .....114 8.4 Impulsflüsse
..................................................
..................................................
......... ........116 8.5 Gemischte
Randbedingungen ..................................
.................................................
.......116 8.6 Gekoppelte Modelle.................
..................................................
................................ .. ...118 9
Multiple Gleichgewichte im Klimasystem
..................................................
.....................122 9.1 Abrupte Klimawechsel
aufgezeichnet in polaren Eisbohrkernen
............................... .....122 9.2
Multiple Gleichgewichte in einem einfachen
Atmosphärenmodell.............................
....124 9.3 Multiple Gleichgewichte in einem
einfachen Ozeanmodell ............................
........... .....125 9.4 Multiple Gleichgewichte
in gekoppelten Modellen...........................
......................... .....127 9.5
Schlussbemerkungen und Ausblick
..................................................
...............................130 10
Übungsaufgaben zur Klimamodellierung..............
..................................................
........131
19Prof. Claussen, Potsdam
http//www.pik-potsdam.de/ claussen/lectures/ phy
sikalische_klimatologie/ physklim1.pdf zum
Original
20IMPRS, 4 June 2003
Earth System Models of Intermediate Complexity
1.
Martin Claussen Potsdam-Institut für
Klimafolgenforschung / Universität Potsdam
- Remarks on the Earth system
- The spectrum of Earth system models
- Examples from CLIMBER-2 and EMIC workshops
- Perspective for Integrative Modelling
Quelle Claussen Earth System Models of
Intermediate Complexity,IMPRS, 4.6.2003
www.pik-potsdam.de/claussen/lectures/
21Climate modelling with quasi-realistic models -
experiences in describing climate during the
Holocene and the Eemian, and in designing
scenarios of plausible future climate change.
The construction and utility of quasi-realistic
climate models is reviewed. Examples of
reconstructing past climates are presented, in
particular for the last millennium and for the
last interglacial, the Eemian (120 ka bp). In
addition, the approach of constructing plausible
future climates, conditional upon the extent the
atmosphere is used as a dump for anthropogenic
substances, is demonstrated with examples.
- Hans von StorchInstitute for Coastal Research,
GKSS Research Center, Geesthacht, Germany
Prof. von Storch, GKSS
Quelle Hans von Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarb
eiter/storch/
7.5.2004 Centro de Astrobiología,
Madrid
http//w3g.gkss.de/G/Mitarbeiter/storch/
22(No Transcript)
23(No Transcript)
242. Virtueller Gastvortrag
zunächst Vorbereitung und Einstimmung
25Die Atmosphäre über Europa im diskreten Modell
U. Cubasch
BQuelleDLR_Schumann200_Klimawandel.ppt
26Europa im diskretisierten Modell
U. Cubasch
BQuelleDLR_Schumann2000_Klimawandel.ppt
27McGuffie and Hendersson-Sellers, 1997
BezugsQuelle Claussen Earth System Models of
Intermediate Complexity,IMPRS, 4.6.2003
www.pik-potsdam.de/claussen/lectures/
28Für die zeit- und ortsabhängigen
Zustandsvariablen
T Temperatur
? Dichte
p Druck
u,v,w Strömungsgeschwindigkeit (3
Komponenten) gelten in jeder Zelle
die Grundgleichungen der Strömungs-
undThermodynamik.
(Erhaltung von Impuls NavierStokes,
Masse Kontinuitätsgleichung,
und Energie,
und Zustandsgleichung
.) Im Ozean wird an
Stelle der Dichte ? meist der Salzgehalt S
benutzt, da ? ? (S,T,p) . In der Atmosphäre
kommen noch wg. der Energiebilanz der
Wasserdampfgehalt q und flüssiges Wolkenwasser
hinzu.
Quelle / Storch-Güss-Heimann 99, p.99ff./
29Es wird ein auf der rotierenden Erde
(Corioliskraft! ) ortsfestes
(Advektionsterm! )
Koordinatensystem verwendet. Daher treten in den
Navier Stokes Gln.(Impulserhaltung) auf
der Coriolis Parameter f f 2 ?
sin ?
mit ? Winkelgeschwindigkeit der
Erddrehung
?, ? geographische Breite und
länge der Erdradius a
Quelle / Storch-Güss-Heimann 99, p.99ff./
30Erinnerung an die Hydrodynamik Eulerian and
Lagrangian description
BQuelle Prof. Dick Yue, MIT_ocw 13.021 Marine
Hydrodynamics, lecture notes 2 Basic
Equations http/ocw.mit.edu/OcwWeb/Ocean-Engineer
ing/13-021MarineHydrodynamicsFall2001/CourseHome/i
ndex.htm
31Erinnerung an die Hydrodynamik D /Dt
BQuelle Prof. Dick Yue, MIT_ocw 13.021
32(No Transcript)
33atmosphere
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
34ocean
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
35Parameterizations
- The terms Fu, Fv, Gq, Gs, GT and Q describe the
effect of unresolved processes on state
variables u, v, q, ? and T, i.e., Fu Fu,?x(u,
v, q, ?,T) - These functions are called parameterizations
they are not uniquely determined (i.e., different
formulations may serve the same purpose), and the
limiting process is not defined, i.e., - Fu,?x(u, v, q, ?,T) does not exist.
- There is nothing like the differential
equations of climate.
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
36Dynamical processes in the atmosphere
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
37Dynamical processes in a global atmospheric model
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
38Dynamical processes in the ocean
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
39Dynamical processes in a global ocean model
Quelle v.Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarbeiter/storch/
40(No Transcript)
41Quasi-realistic Models
- Models of aximum complexity, which feature as
many processes as is possible given the
computational resource. - Meant as a tool to simulate in space-time detail
the trajectory of climate. - Quasi-realistic models do not explain but allow
for numerical experiments.
Quelle Hans von Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarb
eiter/storch/
42Quasi-realistic models
Quelle Hans von Storch Climate modelling with
quasi-realistic models.., Vortrag Madrid
7.5.2004 http//w3g.gkss.de/G/Mitarb
eiter/storch/
432.343 Virtueller Gastvortrag von Prof.
Broccoli, USA
1. Atmospheric General Circulation
Modeling 2. Coupled General
Circulation Modeling Prof.
Anthony J. Broccoli Dept. of
Environmental Sciences Rutgers
University, New Jersey, USA
Homepage
http//www.envsci.rutgers.edu/broccoli/index.html
44Atmospheric General Circulation Modeling
- Anthony J. BroccoliDept. of Environmental
Sciences
Zum Originalhttp//climate.envsci.rutgers.edu/cl
imod/BroccoliAtmos_gcm_env544.ppt
45Coupled General Circulation Modeling
- Anthony J. BroccoliDept. of Environmental
Sciences
Zum Original http//climate.envsci.rutgers.edu/cl
imod/BroccoliCoupled_gcm_env544.ppt
46Ist dies Bild schöner als die Urfassung,das
folgende Bild?
2.344 Übersicht Komplexere Modelle
47IPCC2001_TAR1_TS-Box3
48Box 3 Climate Models How are they built and how
are they applied? Comprehensive climate models
are based on physical laws represented by
mathematical equations that are solved using a
three-dimensional grid over the globe. For
climate simulation, the major components of the
climate system must be represented in submodels
(atmosphere, ocean, land surface, cryosphere and
biosphere), along with the processes that go on
within and between them. Most results in this
report are derived from the results of models,
which include some represen-tation of all these
components. Global climate models in which the
atmosphere and ocean components have been coupled
together are also known as Atmosphere-Ocean
General Circulation Models (AOGCMs). In the
atmospheric module, for example, equations are
solved that describe the large-scale evolution of
momentum, heat and moisture. Similar equations
are solved for the ocean. Currently, the
resolution of the atmospheric part of a typical
model is about 250 km in the horizontal and about
1 km in the vertical above the boundary layer.
The resolution of a typical ocean model is about
200 to 400 m in the vertical, with a horizontal
resolution of about 125 to 250 km. Equations are
typically solved for every half hour of a model
integration. Many physical processes, such as
those related to clouds or ocean convection, take
place on much smaller spatial scales than the
model grid and therefore cannot be modelled
and resolved explicitly. Their average effects
are approximately included in a simple way by
taking advantage of physically based
relationships with the larger-scale variables.
This technique is known as parametrization.
IPCC2001_TAR1_TS-Box3
49(No Transcript)
502.35
Projektionen und Szenarios für das 21.
Jahrhundert
51The last 160,000 years (from ice cores) and the
next 100 years
700
2.351 Historische Perspektive
CO2 in 2100 (with business as usual)
600
Double pre-industrial CO2
500
Lowest possible CO2 stabilisation level by 2100
400
CO2 concentration (ppmv)
CO2 now
CO2
300
10
200
0
Temperature difference from now C
10
100
160
120
80
40
Now
- Time (thousands of years)
Quelle IPCC-COP6a_Bonn2001_wg1_1_Houghton
522.352 Emissionsszenarien und die Komplexität
der weiteren Entwicklung
- Die weitere Entwicklung der Emissionen
von GHG und SO4- Aerosolen hängen vom
komplexen Zusammenwirken vieler Faktoren ab
u.a. Bevölkerung Wachstum, Altersstruktur,
Land-Stadt-Übergang, Wanderung Ökonomie
Wachstum, Struktur Technik Stand
der Technik und
Marktdurchdringung nachhaltiger Technologien
Regierung und Kultur - IPCC gibt einheitliche Emissionsszenarien vor
53Climate change is a sustainable development issue
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 9
54IPCC gibt einheitliche Emissionsszenarien vor
SRES Special Report on Emission Szenarios
published in 2000 AD, 592
Seiten
Summaries SPM, TS Chapters1 Background and
Overview2 An Overview of the Scenario
Literature 3 Scenario Driving Forces4 An
Overview of Scenarios5 Emission Scenarios6
Summary Discussions and Recommendations
Appendices ..... IV Six Modeling
Approaches V Database Description VI Open
Process VII Data tables
55Die 4 Leitszenarien der IPCC -Berichte
BQuelle VGB-Literaturrecherche 2006 Klimawandel
und Energiewqirtschaft, p.106, Bild
8.6, UrQuelle Kasang, HamburgerBildungsserver,
2005, nach IPCC
56The composition of the atmosphere is projected to
change causing an increase in temperature and sea
level
Stand TAR 2001
Stand TAR 2001
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 10
57Main climate changes
3.353
- Higher temperatures - especially on land
- Sea level rise
- Hydrological cycle more intense
- Changes at regional level
Quelle IPCC-COP6a_Bonn2001_wg1_1_Houghton
583.3531 Higher Temperatures
Understanding Near Term CC
QuelleIPCC-AR4-wg1_TS, p.69, Fig.TS.26.
59 OriginalBildunterschrift Model projections of
global mean warming compared to observed
warming. Observed temperature anomalies, as in
Figure TS.6, are shown as annual (black
dots) and decadal average values (black line).
Projected trends and their ranges from the
IPCC First (FAR) and Second (SAR) Assessment
Reports are shown as green and magenta solid
lines and shaded areas, and the projected range
from the TAR is shown by vertical blue bars.
These projections were adjusted to start at the
observed decadal average value in 1990.
Multi-model mean projections from this report
for the SRES B1, A1B and A2 scenarios, as in
Figure TS.32, are shown for the period 2000 to
2025 as blue, green and red curves with
uncertainty ranges indicated against the
right-hand axis. The orange curve shows model
projections of warming if greenhouse gas and
aerosol concentrations were held constant from
the year 2000 that is, the committed warming.
QuelleIPCC-AR4-wg1_TS, p.69, Fig.TS.26
Bildunterschrift
603.3531a Large Scale projections for the 21.Century
Projected global surface warming at the end of
the 21st century.
QuelleIPCC-AR4-wg1_TS, p.70, TableTS.6
61Projections of Future Changes in Climate
Best estimate for low scenario (B1) is 1.8C
(likely range is 1.1C to 2.9C), and for high
scenario (A1FI) is 4.0C (likely range is 2.4C
to 6.4C). Broadly consistent with span quoted
for SRES in TAR, but not directly comparable
QuelleIPCC-AR4wg1_Vortrag Pachauri
62Projections of Surface Temperature
QuelleIPCC-AR4-wg1_TS, p.72, Fig. TS28
63Projected warming in 21st century expected to
be greatest over land and at most
high northern latitudes and least over the
Southern Ocean and parts of the North Atlantic
Ocean
64Original Bildunterschrift Projected surface
temperature changes for the early and late 21st
century relative to the period 1980 to 1999.
The panels show the AOGCM multi-model average
projections (C) for the B1 (top), A1B
(middle) and A2 (bottom) SRES scenarios averaged
over the decades 2020 to 2029 and 2090 to 2099
(right). Some studies present results only for
a subset of the SRES scenarios, or for various
model versions. Therefore the difference in the
number of curves, shown in the left-hand panels,
is due only to differences in the availability of
results. Adapted from Figures 10.8 and 10.28
QuelleIPCC-AR4-wg1_TS, p.72, Fig. TS28,
Bildunterschrift
65Corresponding uncertainties to the Projected
Temperature Changes
Uncertainties as the relative probabilities of
estimated global average warming from several
different AOGCM and EMIC studies for the same
periods.
QuelleIPCC-AR4-wg1_TS, p.72, Fig. TS28 (nun
vollständig)
66Folgerung Near term projections insensitive
to choice of scenario Longer term projections
depend on
scenario and climate model sensitivities
67 Summary Projections of Future Changes in
Climate
- For the next two decades a warming of about 0.2C
per decade is projected for a range of SRES
emission scenarios. - Even if the concentrations of all greenhouse
gases and aerosols had been kept constant at year
2000 levels, a further warming of about 0.1C per
decade would be expected. - Earlier IPCC projections of 0.15 to 0.3 oC per
decade can now be compared with observed values
of 0.2 oC
QuelleIPCC-AR4wg1_Vortrag Pachauri
68Land areas warm more than the oceans with the
greatest warming at high latitudes
Stand TAR 2001
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 13
Urquelle IPCCC2001_TAR1 Fig.9.10d, p.547
(vereinfacht)
693.3532 Sea Level Rise
QuelleIPCC-AR4-wg1_TS, p.70, TableTS.6
70Tens of millions of people are projected to be at
risk of being displaced by sea level rise
Assuming 1990s Level of Flood Protection
Stand TAR 2001
Source R. Nicholls, Middlesex University in the
U.K. Meteorological Office. 1997. Climate Change
and Its Impacts A Global Perspective.
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 18
71 Hydrological Cycle more intense
3.3533 Hydrological Cycle
precipitation increases very likely in high
latitudes Decreases likely in most subtropical
land regions
QuelleIPCC-AR4wg1_Vortrag Pachauri
72Weitere Aussagen der Modelle
73Projections of Future Changes in Climate
-
- There is now higher confidence in projected
patterns of warming and other regional-scale
features, including changes in wind patterns,
precipitation, and some aspects of extremes and
of ice.
74PROJECTIONS OF FUTURE CHANGES IN CLIMATE
- Snow cover is projected to contract
- Widespread increases in thaw depth most
permafrost regions - Sea ice is projected to shrink in both the Arctic
and Antarctic - In some projections, Arctic late-summer sea ice
disappears almost entirely by the latter part of
the 21st century
75PROJECTIONS OF FUTURE CHANGES IN CLIMATE
- Very likely that hot extremes, heat waves, and
heavy precipitation events will continue to
become more frequent - Likely that future tropical cyclones will become
more intense, with larger peak wind speeds and
more heavy precipitation - less confidence in decrease of total number
- Extra-tropical storm tracks projected to move
poleward with consequent changes in wind,
precipitation, and temperature patterns
76(No Transcript)
772.36
Was tun ? Erste Ansätze der Internationalen
Gemeinschaft
78UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE
CHANGEUNFCC92 Rio de Janeiro 1992
- ARTICLE 2 OBJECTIVE The ultimate objective of
this Convention .... is to achieve, .
stabilization of greenhouse gas concentrations in
the atmosphere - at a level that would prevent dangerous
anthropogenic interference with the climate
system. - Such a level should be achieved within a
time-frame sufficient - to allow ecosystems to adapt naturally
to climate change. - to ensure that food production is not
threatened, and - to enable economic development to
proceed in a sustainable manner.
Quelle IPCC-COP6a_Bonn2001_wg1_1_Houghton
79Stabilization of the atmospheric concentration of
carbon dioxide will require significant emissions
reductions
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 19
80IPCC Climate Change 2001- The Scientific Basis
- Summary for Policymakers (SPM)
- Drafted by a team of 59
- Approved sentence by sentence
- by WGI plenary (99 Governments and 45 scientists)
14 chapters 881 pages 120 Lead Authors 515
Contributing Authors 4621 References quoted
Quelle IPCC-COP6a_Bonn2001_wg1_1_Houghton
81Quelle IPCC-COP6a_Bonn2001_wg1_1_Houghton
82IPCC Website
83Ansatzpunkte zur Wende
- 1. CO2-freie Energiequellen
- Erneuerbare Energien ( RE Renewable Energies)
- Wasserkraft, Wind, Biomasse,
Sonne (themisch, Strom) - Kernenergie , Generation IV Kernfusion
- Geothermie (Oberflächennah, Tiefe Geothermie)
- 2. CO2 Sequester und GeoEngineering
- CCS, Storage in geologischen Schichten, im
Meer - Eisendüngung zum Algenwachstum, Aufforsten
- Sulfat in die Stratoposhäre
- 3. Rationelle Energieverwendung
- Gleiche Energiedienstleistung mit geringerem
Energieeinsatz - Höhere Wirkungsgrade bei Kraftwerken, Motoren
etc.
- 4. Verhaltensänderung
- Leben mit weniger Energiedienstleistungen,
aus
Knappheit oder Bescheidenheit - Ernährung Weniger Fleisch
84Pflicht für jeden
Immer strebe zum Ganzen,
und kannst Du selber kein Ganzes
Werden, als dienendes Glied schließ an
ein Ganzes Dich an
Spruch von JWG vom bescheidenen aber endlichen
Beitrag eines Wasserträgers
Quelle J.W. Goethe Gedichte, Herausgeber
ErichTrunz, Verlag C.H. Beck. p.226
UrquelleJWG Distichon im Zusammenhang der
Xenien entstanden, aber außerhalb des Xenien
Zyklus veröffentlicht
85Wichtigste benutzte Literatur für 0.2 1.
IPCC-COP6a_Bonn2001_WatsonSpeech Redemanuskript
Bilder2. IPCC2001_TAR1 Climate Change 2001,
The Scientific Basis
insbesondere Technical Summary und
die jeweils als Quelle oder Urquelle
angegebenen Seiten.
86Reste
87- CO2, temperature, precipitation and sea level in
the 21.th century - All IPCC projections show that the atmospheric
concentration of CO2 will increase
significantly during the 21th century in the
absence of climate change policies - Climate models project that the Earth will warm
1.4 to 5.8 C between 1990 and 2100, with
most land areas warming more than the global
average - Precipitation will increase globally, with
increases and decreases locally, with an
increase in heavy precipitation events over most
land areas - Sea level is projected to increase 8-88 cm
between 1990 and 2100 - Models project an increase in extreme weather
events, e.g. heatwaves, heavy precipitation
events, floods, droughts, fires, pest outbreaks,
mid-latitude continental summer soil
moisture deficits, and increased tropical
cyclone peak wind and precipitation intensities.
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech p
1-Summary
88Global mean surface temperature is projected to
increase during the 21st century
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 11
89Projected surface temperatures for the 21st
century would be unheralded in the last 1000
years
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 12
90Land areas warm more than the oceans with the
greatest warming at high latitudes
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 13
Urquelle IPCCC2001_TAR1 Fig.9.10d, p.547
(vereinfacht)
91There is significant inertia in the climate system
Scenario Stabilisation of CO2 at 550 ppm
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 14
92Some areas are projected to become wetter, others
drier
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 15
UrQuelle IPCC2001_TAR Fig.9.11d, p.550
(vereinfacht)
93Projected Changes in Extreme Climate Events and
Resulting Impacts
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Tab 1
94Projected Changes in Extreme Climate Events and
Resulting Impacts (cont.)
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Tab 1
continued
95Crop yields are projected to decrease throughout
the tropics and sub-tropics, but increase at high
latitudes
2020s
Percentage change in average crop yields for the
climate change scenario. Effects of CO2 are taken
into account. Crops modeled are wheat, maize and
rice. Jackson Institute, University College
London / Goddard Institute for Space Studies /
International Institute for Applied Systems
Analysis
2050s
97/1091 16
2080s
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 17
96Tens of millions of people are projected to be at
risk of being displaced by sea level rise
Assuming 1990s Level of Flood Protection
Source R. Nicholls, Middlesex University in the
U.K. Meteorological Office. 1997. Climate Change
and Its Impacts A Global Perspective.
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech Fig 18
97- Biological systems have already been affected
- Biological systems have already been affected in
many parts of the world by changes in
climate, particularly increases in regional
temperature - Bird migration patterns are changing and birds
are laying their eggs earlier - the growing season in the Northern hemisphere
has lengthened
by about 1-4 days per decade
during the last 40 years and - there has been a pole-ward and upward migration
of plants, insects and animals. - Projected changes in climate will have both
beneficial and adverse effects on water
resources, agriculture, natural ecosystems and
human health, but the larger the changes in
climate the more the adverse effects dominate
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech p
2-Summary
98- Projected changes in climate will have
- both beneficial and adverse effects on
- water resources,
- agriculture,
- natural ecosystems
-
- human health, but
- the larger the changes in climate - -
- the more the adverse
effects dominate
Quelle IPCC-COP6a_Bonn2001_WatsonSpeech p
2-Summary
99Early Results for 2007-Report IPCC-AR4
UrQuelleMPI-Meteorologie, Hamburg,
Modellrechnungen mit ECHAM5 BQuelle
nature439,2006-0126,p.375, Early results of
AR4, http//www.nature.com/nature/journal/v439/n
7075/pdf/439374a.pdf
100Early Results for 2007-Report IPCC-AR4
- Model calculations with 3 emissions scenarios,
representing 550, 700 and 800 ppm CO2 by 2100
AD , give - Global temperatures are likely to rise by 2.5
4 C by 2100, - Arctic will become ice-free during summer by
2090 AD . (even in the 550 ppmCO2
case) - The global sea level will rise by up to 40 cm ,
composed of up
to 30 cm as water warms and expands, and
by an additional 10 cm
as part of Greenlands ice sheet melts. - weakening of the Atlantic ocean circulation.
(not a shut down !) - more rain and snow at high latitudes and in the
tropics, and - less rainfall in Mediterranean and subtropical
regions. - extreme precipitation and drought increase
worldwide.
UrQuelleMPI-Meteorologie, Hamburg,
Modellrechnungen mit ECHAM5 BQuelle
nature439,2006-0126,p.375, Early results of
AR4, http//www.nature.com/nature/journal/v439/n
7075/pdf/439374a.pdf
101Early Results for 2007-Report IPCC-AR4
Originaltext Global temperatures are likely to
rise by 2.54 C by 2100, according to the latest
calculations by scientists at the Max Planck
Institute for Meteorology in Hamburg, Germany.
The institute is one of 15 asked by the
Intergovernmental Panel on Climate Change to run
extended climate simulations for its fourth
assessment report. The researchers ran six
parallel experiments, requiring 400,000 computing
hours, using their atmospheric general
circulation model ECHAM5. They looked at three
emissions scenarios, representing carbon dioxide
concentrations of 550, 700 and 800 parts per
million (p.p.m.) by 2100 (see graph). Even under
the most optimistic assumptions, the model
suggests that the Arctic will become ice-free
during summer by 2090, says Erich Roeckner, who
heads the group. The global sea level will rise
by up to 30 centimetres as water warms and
expands, and by an additional 10 centimetres as
part of Greenlands ice sheet melts. The
scientists also expect a weakening but not a
shut-down of the Atlantic ocean circulation.
There will be more rain and snow at high
latitudes and in the tropics, and less rainfall
in Mediterranean and subtropical regions. Extreme
precipitation and extreme drought are likely to
increase worldwide. Q.S. (Q.S.Quirin Schiermeier)
UrQuelleMPI-Meteorologie, Hamburg,
Modellrechnungen mit ECHAM5 BQuelle
nature439,2006-0126,p.375, Early results of
AR4, http//www.nature.com/nature/journal/v439/n
7075/pdf/439374a.pdf
102(No Transcript)
103(No Transcript)