Title: Presentazione di PowerPoint
1Ca2 binding protein
- Substitution of Ca2 with Ln3
- Full assignment with standard techniques
- Direct detection 13C experiments
Identification of ligands to obtain new
structural constraints
2Observed Hyperfine Shift
Pseudocontact shift The program FANTASIAN1 can
predict pseudocontact shifts
Contact shifts Values of about 10 ppm for
backbone 13CO coordinating Ce are expected
Identification of backbone CO coordinating the
metal
L. Banci, I. Bertini, K.L. Bren, M.A. Cremonini,
H.B. Gray, C. Luchinat, P. Turano, JBIC 1996
Bertini, Lee, Luchinat, Piccioli, Poggi,
ChemBioChem 2001
3Nuclear relaxation due to the electron-nucleus
dipolar coupling Solomons equations
4Constraint surfaces
A
B
M
A
C
B
C
D
NOE
T1
5Residual Dipolar Coupling
Pseudocontact shift
Residual Dipolar Coupling
6PCS RDC CCR
7positive
Pseudocontact shifts
negative
Axial Totally Rhombic
8Pseudocontact shifts
Â
A
A
M1, M2, M3
M
C
B
3 atoms, the same metal ion
Three metal ions, the same atom
9- Given ri, ?, ? and ??s, it is straightforward to
find ?pc - Given ri, ? and ? and ?pc, it is still
straightforward to find ??s - FANTASIAN and FANTALIN programs available
- at www.postgenomicnmr.net
- Given ?pc only, there is not a univocal set of
the other parameters
10Pseudocontact shifts
M
The relative position of the metal ion with
respect to any rigid domain can be determined but
NOT the directions of the c tensor axes. PCS do
not provide a unique solution, unless two sets,
relative to two different metal ions, are used.
M
Bertini, Longinetti, Luchinat, Parigi, Sgheri, J.
Biomol. NMR 2002
The program PSEUDYANA is available at the web
site www.postgenomicnmr.net
11RDC
3 NH, the same metal ion
Two metal ions, the same NH
12Tensor 1
Tensor 2
13(No Transcript)
14- Given ?, ? and ??s, it is straightforward to
find Drdc - Given ?, ? and Drdc, it is still straightforward
to find ??s - FANTORIENT program available at
- www.postgenomicnmr.net
- Given Drdc only, there is not a univocal set of
the other parameters
15Curie-Dipole Dipole Cross Correlation
CCR
B0
M
q
time averaged electron magnetic moment ltmgt
N
H
Real part of the spectral density
Bertini, Luchinat, Tarchi, Chem. Phys. Lett.,
1993 Bertini, Luchinat, Piccioli, Tarchi Concept
Magn. Reson., 1994 Boisbouvier, Gans, Blackledge,
Brutscher, Marion, J.Am.Chem.Soc., 1999
Imaginary part of the spectral density
Ghose, Prestegard, J. Magn. Reson., 1997
16Curie-Dipole Dipole Cross Correlation
Effect of reducing J in an antiphase doublet
having equal / unequal linewidths
True and false COSY cross peaks
Bertini, Luchinat, Tarchi Chem. Phys. Lett., 1993
Bertini, Luchinat, Piccioli, Tarchi Concept
Magn. Reson., 1994
17Curie-Dipole Dipole Cross Correlation
Real part of the spectral density
(proposed by Marion et al. as structural
constraints) Boisbouvier, Gans, Blackledge,
Brutscher, Marion, J.Am.Chem.Soc., 1999
Imaginary part of the spectral density
Ghose, Prestegard, J. Magn. Reson., 1997
18Isotropic versus Anisotropic Curie-DD Cross
Correlation
Following Vega and Fiat, the dipolar shift
Hamiltonian is H gA IA?s?B0
19CCR
Complete theory for CCR outside spin Hamiltonian
formalism
The angles qXAK, qYAK and qZAK specify the
directions of the principal axes X, Y and Z of
the shift tensor of nucleus A with respect to the
AK axis. The principal axes for the shift tensor
are obtained by first calculating the tensor in
the principal frame of the susceptibility tensor
and then diagonalising the symmetric part
Bertini, Kowalewski, Luchinat, Parigi J. Magn.
Reson. 2001, in press
20Isotropic versus Anisotropic Curie-DD Cross
Correlation
CCR
21CCR
Curie-DD CCR measured on lanthanide-substituted
calbindin
Bleaney, 1972
cisoBleaney cisofit Ce 4.6 4.4 10-32
m3 Yb 14.4 16.6 10-32 m3
22How to measure CCR
Separation of cross correlation effects on the
(strong) multiplet components (J-resolved G
experiments, TROSY-based sequences)
Selection of the (weak) signal arising from the
relaxation-allowed coherence transfer
(quantitative G experiments)
Tessari, Vis, Boelens, Kaptein and Vuister, JACS,
1997 adapted Bertini, Cavallaro, Cosenza,
Kümmerle, Luchinat, Piccioli, Poggi, J. Biomol.
NMR (2002)
Boisbouvier, Gans, Blackledge, Brutscher, Marion,
JACS., 1999
CCR obtained with exponential fitting of data
CCR obtained with linear fitting of data
The sequence is shorter, therefore S/N is higher
Better fitting of the data
23Quick structure
Hyperfine based structural constraints
- Pseudocontact shifts
- Residual dipolar couplings
- Cross correlation
24Towards structure without NOEs
At least 2 lanthanide ions are needed Bertini,
Longinetti, Luchinat, Parigi, Sgheri, J. Biomol.
NMR 2002
Structure can be obtained with PCS, RDC, CCR and
less than 10 NOEs
Bertini, Donaire, Jiménez, Luchinat, Parigi,
Piccioli, Poggi, J. Biomol. NMR 2001
25Perspectives
M
site II
site I
M
CSI
X 4
N
C
26Perspectives structure without assignment
3 PCS 3 RDC relative to two metal ions for
each tetrahedrally arranged atoms centered on the
Ca atom of single amino acids
Cb
Ca
C
N
Ha
M
27Solution structure of Ce2-substituted N-terminal
fragment of calmodulin (TR1C)
PCS
380 pcs values
Magnetic Anisotropy Tensors of Ce2-TR1C in metal
binding sites I and II
site I site II ??ax ? 3? (m3 ? 1032) -1.52
?0.02 1.29?0.02 ??rh ? 3? (m3 ? 1032) -0.62
?0.03 0.59?0.04 Ce3 RMSD (Ã…) 0.29 0.42
Bentrop, Bertini, Cremonini, Forsén, Luchinat,
Malmendal, Biochemistry 36, 11605 (1997)
28Structure of Ce substituted Calbindin D9k
Ca2
Ce3
site II
site I
C-terminal
N-terminal
29Calbindin structure refinement with paramagnetic
constraints
Diamagnetic constraints
- 1793 NOEs
- 57 phi values
- 46 psi values
- 30 Hbonds
- 13 1D-NOE (RMSD0.69Ã…)
- Paramagnetic constraints
- 1164 pcs from 11 lanthanides
- 26 T1 values
- 64 rdc from Ce (RMSD0.26 Ã…)
Bertini, Donaire, Jiménez, Luchinat, Parigi,
Piccioli, Poggi, J.Biomol.NMR 2001
30Structure of Ce3 substituted Calbindin D9k
Bertini, Donaire, Jiménez, Luchinat, Parigi,
Piccioli, Poggi, J.Biomol.NMR 2001
31Allegrozzi, Bertini, Janik, Lee, Liu, Luchinat
J.Am.Chem.Soc., 122, 4154 (2000)
32RDC
Structure-independent cross-validation of
RDCs CaTmCbiso CaLuCbbic CaTmCbbic Barbieri,
Bertini, Lee, Luchinat, Velders, J.Biomol.NMR 2002
33RDC
PCS
c tensors from PCS RDCs from gt2 metal ions q
and f angles (assuming rigid structure) or RDCs
from gt5 metal ions complete model-free analysis
RDC calc
RDC obs
q calc
f calc
f obs
q obs
34Predicted/observed pattern of pseudocontact
shifts and rdc induced by lanthanide ions
Open squares Theoretical expectation Filled
circles Experimental values
Bleaney, J.Magn.Reson. 1972 Allegrozzi,
Bertini, Lee, Liu, Luchinat, JACS 2000
35(No Transcript)
36Pseudocontact shift-based structural refinement
in lanthanide-binding proteins
6-15A, Ce
Allegrozzi, Bertini, Janik, Lee, Liu, Luchinat
J.Am.Chem.Soc, 2000
6A
9-23A, Yb
15-38A, Dy
37Rdcs obtained on proteins dissolved in orienting
media nicely complement rdcs from
lanthanide-induced self-orientation
as demonstrated by the rdc values themselves
TmCb in bicelles provides rdc sum of rdc of TmCb
in isotropic media rdc of LuCb in bicelles
LnTm
Barbieri, Bertini, Lee, Luchinat, Velders, J.
Biomol. NMR 2002
38Â
Cross-correlation between Curie and N-H dipolar
coupling
M
N
q
Curie
Dipole-dipole
H
Bertini, Luchinat, Tarchi, Chem. Phys. Lett.,
1993 Bertini, Luchinat, Piccioli,
Tarchi, Concepts Magn. Reson. 1994
Â
39Yb3 in a protozoan EF-hand calcium binding
protein
(A) Experimental and (B) simulated plots of
intensity profiles of the original and
pseudocontact shifted cross peaks of G15 and G122
(K3 1.55E4 K2 2.46E4). (C) Simulated
plots of the intensity profiles of original and
pseudocontact shifted cross peaks of G15 and G122
obtained by interchanging the values of K2 and
K3 values
40Superposition of four Ca2-binding loops of
EhCaBP (shown in blue) with the corresponding
loops of CaM (red) and TnC (dark green).