Piero Galeotti - PowerPoint PPT Presentation

About This Presentation
Title:

Piero Galeotti

Description:

Mont Blanc neutrino telescope 1987. Kamiokande neutrino telescope 1987. Hirata et al. ... Mont Blanc 1:45 - 3:45 ( 5-neutrinos at 2:56 U.T.) F 1.2 (second) n. C(-1.1) ... – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 30
Provided by: lnfI
Category:
Tags: galeotti | mont | piero

less

Transcript and Presenter's Notes

Title: Piero Galeotti


1
Piero Galeotti Università di Torino and
INFN GianVittorio Pallottino Università di Roma
and INFN Guido PizzellaUniversità di Roma Tor
VergataINFN- Frascati
SN1987A revisited
2
Results from LSD and KAMIOKANDE
3
2h56m
7h35m
LSD
Kamioka
8
0
Hours of 23 February 1987
Mont Blanc 45 pulses/hour gt 5 MeV Kamiokande
85 pulses/hour gt 7.5 MeV
(7.5 MeV corresponds to Nhit20)
4
Mont Blanc neutrino telescope 1987
5
(No Transcript)
6
Kamiokande neutrino telescope 1987
7
(No Transcript)
8
Hirata et al. PR D 448 (1988)
9
May the Supernova Bang more than once ?
10
Kamiokande neutrino telescope 1987
New analysis
  • The data have been supplied to us by the
    Kamiokande collaboration in 1987. We have
    acknowledged the collaboration in several papers

11
relative Kamiokande time
IMB
no IMB
12
11 ? in 12 s Nhgt20
7 ? in 6 s Nh gt 21
13
relative Kamiokande time
IMB Egt15 MeV
no IMB Elt15 MeV
14
Correlation of the Kamiokande and LSD neutrino
detectors with the Rome and Maryland
gravitational wave detectors
15
(No Transcript)
16
We have searched for possible correlations
between the signals of the neutrino detectors and
those of the g.w. detectors
17
The algorithm
C(f) 1/Nn Si ER(tif ) EM(tif )
Nn number of pulses (in the neutrino detector)
in a given period (say,
one hour) ti time of a pulse f common time
shift for a possible delay
18
The background
Cb(f1, f2) 1/Nn S?? ER(f1) EM(f2)
Nn number of pulses (in the neutrino detector)
in a given period (say,
one hour) f1, f2 random time shifts for the
background
19
We perform N random extractions of f1, f2 for the
background and count the number n of times when
Cb(f1, f2) gt C(f)
20
N one million random data for the background
C(???1.?)72.6 K
Cb(f1, f2) with random f1, f2
21
Mont Blanc 145 - 345 ( 5-neutrinos at 256
U.T.)
n
C(-1.1)
F 1.2 (second)
22
What about Kamiokande ?
  • (absolute time uncertainty 1 min)

23
?c is the time correction in s
best ?c7.8 s
24
Kamiokande has a time error 1 minute
Kamiokande time correction 7.8 s
Schramm and Truran (1990)
IMB
K
25
(No Transcript)
26
New analysis of the original data
27

Periods of one hour moved in steps of 6 min
n (N105)
hours of 23 February
n (N104)
with time correction of 7.8 s
28
CONCLUSIONSThis new analysis reinforces the
idea of a long duration activity of SN1987A in
the neutrino emission.
29
noi non doviamo desiderare che la natura si
accomodi a quello che parrebbe meglio disposto et
ordinato a noi, ma conviene che noiaccomodiamo
lintelleto nostro a quello che ella ha fatto,
sicuri tale essere lottimo et non
altro.Galileo in 1612 to Federico Cesi.
  • THE END
Write a Comment
User Comments (0)
About PowerShow.com