Pengolahan Kimia - PowerPoint PPT Presentation

1 / 75
About This Presentation
Title:

Pengolahan Kimia

Description:

Ion Exchange Water Softener with Sensor- Controlled Recharge Softener Selection Considerations Required grain capacity Daily water use (household population) ... – PowerPoint PPT presentation

Number of Views:210
Avg rating:3.0/5.0
Slides: 76
Provided by: AlmaK8
Category:

less

Transcript and Presenter's Notes

Title: Pengolahan Kimia


1
Pengolahan Kimia
2
  • Penyisihan unsur pencemar dengan cara penambahan
    chemical agent/bahan kimia sehingga terjadi
    reaksi kimia, contoh koagulasi dan presipitasi
  • Prinsip dasar perubahan bentuk
    terlarut/tersuspensi menjadi bentuk yang
    terendapkan (kecuali desinfeksi) sehingga lumpur
    yang terendapkan termasuk kategori B3 (perlu
    treatment khusus)

3
  • Kelebihan pengolahan secara kimia
  • Efisiensi tinggi (dapat mencapai angka yang
    diinginkan)
  • Waktu dentensi relatif singkat sehingga volume
    reaktor/unit pengolahan relatif lebih kecil
  • Kekurangan
  • Ada penambahan zat aditif sehingga meningkatkan
    konsentrasi Total Dissolved Solid (TDS).
    Penyisihan TDS relatif sulit dan mahal membran
    atau destilasi
  • Meningkatkan beban pengolahan
  • Biaya bahan kimia cukup mahal biaya untuk energi

4
Softening
  • Benno Rahardyan
  • Faculty of Civil and Environmental Engineering -
    ITB

5
(No Transcript)
6
(No Transcript)
7
Private Water System Resources
8
  • Hard water

9
What is "Hard Water"?
  • Perhaps you have on occassion noticed mineral
    deposits on your cooking dishes, or rings of
    insoluble soap scum in your bathtub. These are
    not signs of poor housekeeping, but are rather
    signs of hard water from the municipal water
    supply.
  • Hard water is water that contains cations with a
    charge of 2, especially Ca2 and Mg2.
  • These ions do not pose any health threat, but
    they can engage in reactions that leave insoluble
    mineral deposits. These deposits can make hard
    water unsuitable for many uses, and so a variety
    of means have been developed to "soften" hard
    water i.e.,remove the calcium and magnesium ions.

10
(No Transcript)
11
water hardness
  • Hard water is water contaminated with compounds
    of calcium and magnesium. Dissolved iron,
    manganese, and strontium compounds can also
    contribute to the "total hardness" of the water,
    which is usually expressed as ppm CaCO3.
  • Water with a hardness over 80 ppm CaCO3 is often
    treated with water softeners , since hard water
    produces scale in hot water pipes and boilers and
    lowers the effectiveness of detergents.

12
(No Transcript)
13
(No Transcript)
14
Problems with Hard Water
  • Mineral deposits are formed by ionic reactions
    resulting in the formation of an insoluble
    precipitate. For example, when hard water is
    heated, Ca2 ions react with bicarbonate (HCO3-)
    ions to form insoluble calcium carbonate (CaCO3),
    as shown in Equation 1.

15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
  • This precipitate, known as scale, coats the
    vessels in which the water is heated,
  • reduce the efficiency of heat transfer
  • serious effect for industrial-sized water boilers
  • scale can accumulate on the inside of appliances,
    such as dishwashers, and pipes.

21
  • Softening

22
(No Transcript)
23
Precipitation
24
  • Neutralization
  • CO2Ca(OH)2 ?? CaCO3(s) H2O
  • Ca2 Precipitation at pH 10
  • Ca2 2HCO3-Ca(OH)2 ?? 2CaCO3(s) 2H2O

25
  • Mg2 Precipitation at pH 11
  • Mg2 2HCO3-Ca(OH)2 ?? 2MgCO3 CaCO3(s)
    2H2O
  • Mg2 CO3 Ca(OH)2 ?? Mg(OH)2((s)
    CaCO3(s)
  • Ionic Balance addnon non hardness ionic (Na)
  • Mg2 NaOH ?? Mg(OH)2((s) Na
  • Ca2 Na2CO3 ?? CaCO3(s) 2Na

26
Precipitation
  • For large-scale municipal operations, a process
    known as the "lime-soda process" is used to
    remove Ca2 and Mg2 from the water supply.
  • The water is treated with a combination of slaked
    lime, Ca(OH)2, and soda ash, Na2CO3. Calcium
    precipitates as CaCO3, and magnesium precipitates
    as Mg(OH)2. These solids can be collected, thus
    removing the scale-forming cations from the water
    supply.
  • To see this process in more detail, let us
    consider the reaction for the precipitation of
    Mg(OH)2.
  • Consultation of the solubility guidelines in the
    experiment reveals that the Ca(OH)2 of slaked
    lime is moderately soluble in water. Hence, it
    can dissociate in water to give one Ca2 ion and
    two OH- ions for each unit of Ca(OH)2 that
    dissolves.

27
  • The OH- ions react with Mg2 ions in the water to
    form the insoluble precipitate. The Ca2 ions are
    unaffected by this reaction, and so we do not
    include them in the net ionic reaction. They are
    removed by the separate reaction with CO32- ions
    from the soda ash.

28
(No Transcript)
29
Ion-exchange
  • Ion-exchange devices consist of a bed of plastic
    (polymer) beads covalently bound to anion groups,
    such as -COO-.
  • The negative charge of these anions is balanced
    by Na cations attached to them. When water
    containing Ca2 and Mg2 is passed through the
    ion exchanger, the Ca2 and Mg2 ions are more
    attracted to the anion groups than the Na ions.
  • Hence, they replace the Na ions on the beads,
    and so the Na ions (which do not form scale) go
    into the water in their place.

30
  • The ion exchange process
  • Calcium (Ca2) and magnesium (Mg2) ions that
    cause water hardness can be removed fairly easily
    by using an ion exchange procedure.
  • Water softeners are cation exchange devices.
    Cations refer to positively charged ions. Cation
    exchange involves the replacement of the hardness
    ions with a nonhardness ion.
  • Water softeners usually use sodium (Na) as the
    exchange ion. Sodium ions are supplied from
    dissolved sodium chloride salt, also called
    brine. In the ion exchange process, sodium ions
    are used to coat an exchange medium in the
    softener.
  • The exchange medium can be natural "zeolites" or
    synthetic resin beads that resemble wet sand.

31
The exchange medium can be natural "zeolites" or
synthetic resin beads that resemble wet sand.
32
(No Transcript)
33
  • Softening Process
  • NaZeolite Ca2 --gt CaZeolite Na and
  • NaZeolite Mg2 --gt MgZeolite Na
  • Recharging Process
  • NaCl CaZeolite --gt NaZeolite CaCl
  • and
  • NaCl MgZeolite --gt NaZeolite MgCl

34
Ion exchange softeners replace Ca and Mg with
Na ions. Zeolite medium is recharged with Na by
NaCl brine when depleted.
35
(No Transcript)
36
Ion Exchange Water Softeners
  • Exchange sodium ions for calcium and magnesium
    ions in water
  • May be dietary hazard - hypertension (adds ?140
    mg/l of sodium in Hard water)
  • Use potassium salt (KCl) for health reasons

37
  • many people with high blood pressure or other
    health problems must restrict their intake of
    sodium.
  • Because water softened by this type of ion
    exchange contains many sodium ions, people with
    limited sodium intakes should avoid drinking
    water that has been softened this way. Several
    new techniques for softening water without
    introducing sodium ions are beginning to appear
    on the market.

38
Types of water softening equipment available
  • Water softeners are classified in five different
    categories
  • Manual There are several types of manual
    softeners. The operator opens and closes valves
    to control the frequency, rate and time length of
    backflushing or recharging.
  • Semi-automatic The operator initiates only the
    recharging cycle. A button is pushed when the
    softener needs recharging and the unit will
    control and complete the recharging process.
  • Automatic The automatic softener usually is
    equipped with a timer that automatically
    initiates the recharging cycle and every step in
    the process. The operator needs only to set the
    timer and add salt when needed. It is the most
    popular type of softener used.

39
Types of water softening equipment available
  • Demand initiated regeneration (DIR) All
    operations are initiated and performed
    automatically in response to the water use demand
    for softened water. DIR systems generally have
    two softening tanks and a brine tank. While one
    tank is softening the other tank is recharging.
  • Off-site regeneration (generally rental units) A
    used softening tank is physically replaced with a
    recharged tank. Spent softening tanks are then
    recharged at a central location.

40
Ion Exchange Water Softener with Sensor-
Controlled Recharge
41
Softener Selection Considerations
  • Required grain capacity
  • Daily water use (household population)
  • Water hardness
  • Desired regeneration schedule
  • Initial cost
  • Water conservation
  • Other (Iron removal, etc.)

42
Ion Exchange Water Softener Capacity
  • Rated by grains of hardness treated between
    regenerations
  • Example
  • Water hardness 200 mg/l
  • Softener Capacity 2000 gr
  • Household Population 4 persons
  • Calculate
  • Water Use 4 persons x 200 l/person-day 800
    l/day
  • Daily Hardness Treated 800 l/day x 200 mg/l
    160 gr/day
  • Regeneration Interval 2000 gr/ 160 gr/day
    12.5 days

43
Recommended Softener Sizes
Pump Capacity (l/det) Softener Capacity (gr) Water Hardness (mg/l)
50 750 350
80 1000 500
120 1500 850
140 2000 1200
200 3000 1500
44
Ion Exchange Water Softener Recharge Control
Method
Water Use
Initial Cost -
  • -Time Clock
  • -Flow Meter
  • -Hardness
  • - Sensor


-
45
Water Softening
  • Permanent magnet water softeners dont work
  • Electrostatic and catalytic descalers may
    descale water, but dont soften it
  • Scale will not buildup on pipes, water heater
    elements, bathtubs etc.
  • Sudsing action of soaps is not improved

46
Typical Programmable Water Softener Controller
47
(No Transcript)
48
(No Transcript)
49
Reactions
  • CO2Ca(OH)2?CaCO3H20
  • Ca(HCO3)2Ca(OH)22CaCO32H20
  • Mg(HCO3)2Ca(OH)2MgCO3CaCO32H20
  • MgCO3Ca(OH) 2Mg(OH)22CaCO3
  • MgSO4Ca(OH) 2CaSO4 Mg(OH)2

50
  • CaSO4Na2CO3CaCO3 Na2SO4
  • CaCl2Na2CO3CaCO3 2NaCl
  • MgSO4Ca(OH)2CaSO4 Mg(OH)2
  • MgCl2Ca(OH)2 Mg(OH)2 CaCl2

51
  • CO2Ca(OH)2?Ca22OH-
  • CO22OH- ?HCO3-
  • HCO3-OH- ?CO3-2H20
  • Ca2 CO3-2 ? CaCO3
  • Mg2 2OH- ?Mg(OH)2

52
Pretreatment and other variations
  • Prior to softening some preliminary treatment may
    be advisable if
  • Raw water turbidities exceed 3,000 NTU at times
  • Raw water has high concentration of free carbon
    dioxide (more than 10 mg/l)
  • The raw water is high in organic colloids of a
    type that impedes crystallization of calcium
    carbonate
  • Raw water quality is highly variable over short
    periods of time
  • Recalcining of sludge is to be practiced

53
Variation of process
  • Single or two stage recarbonation ater
    conventional lime-soda treatment
  • Sludge recirculation
  • Excess lime treatment with split treatment or
    recarbonation
  • Post-treatment with polyphophates
  • Coagulation with alum, activated silica, or
    polymers
  • The use of three-stage treatment
  • The substitution of cation exchangers for soda
    ash to remove non carbonate hardness
  • The use of caustic soda instead of soda ash

54
  • CO22NaOH?Na2CO3H20
  • Ca(HCO3)22NaOHCaCO3Na2CO32H20
  • Mg(HCO3)24NaOHMg(OH)22Na2CO32H20
  • MgSO42NaOHMg(OH)2 Na2SO4

55
Systems expressing hardness of water
  • German degree Ca and Mg equivalent with 10 mg
    CaO/liter
  • French degree Ca and Mg equivalent with 10 mg
    CaCO3/liter
  • English degree one grain (0.06480 g) of CaCO3
    per gallon (3.785 L)
  • USA ppm (mg/L) CaCO3

56
Expressing hardness in milliequivalent/liter
  • 1 milli-equivalent per liter
  • 2.8 German degree
  • 5.0 French degree
  • 3.5 English degree
  • 50 mg CaCO3/liter
  • lt 2 meq/L ? soft water
  • gt 5 meq/L ? hard water

57
  • Total hardness amount of Ca and Mg non
    carbonate hardness carbonate hardness.
  • Carbonate hardness Ca and Mg equivalent to
    bicarbonate content
  • The difference between total hardness and
    bicarbonate (also called carbonate) hardness is
    the non carbonate hardness, which corresponds
    with ions like Cl-, and SO4--

58
HCO3-
I
Total hardness
Ca2
Mg2
HCO3-
II
Total hardness
Ca2
Mg2
59
Solubility in water
Substance mg/l meq/l mg CaCO3/l
Ca(OH)2 1280 34.9 1730
CaCO3 15 0.3 15
Ca3(PO4)2 Nearly insoluble Nearly insoluble
Mg(OH)2 8.4 0.29 14.5
MgCO3 110 2.62 131
Mg3(PO4)2 Nearly insoluble Nearly insoluble
60
  • Disadvantage of phosphate method
  • Rather expensive (cost of sodium orthophosphate)
  • Treated water will contain some rest of PO43-
  • For drinking water it is not necessary and even
    not reccomendable to remove all hardness

61
Lime soda process
  • I CO2Ca(OH)2?CaCO3H20 1
  • II Ca(HCO3)2Ca(OH)22CaCO32H20
    1
  • IIIa Mg(HCO3)2Ca(OH)2MgCO3CaCO32H20
  • IIIb MgCO3Ca(OH)2Mg(OH)22CaCO3
  • III Mg(HCO3)22Ca(OH)2Mg(OH)22CaCO32H20 2
  • IV CaCl2Na2CO3CaCO3 2NaCl 1
  • Va MgCl2Ca(OH)2CaCl2 Mg(OH)2
  • Vb MgCl2Na2CO3CaCO3 2NaCl
  • V MgCl2Ca(OH)2Na2CO3CaCO3 Mg(OH)2 2NaCl
    1 1

needed Ca(OH)2 in meq needed Na2CO3 in meq
II, III carbonate hardness reactions IV, V non
carbonate hardness reaction
62
Lime soda process
  • I CO2Ca(OH)2?CaCO3H20 1
  • II Ca(HCO3)2Ca(OH)22CaCO32H20
    1
  • IIIa Mg(HCO3)2Ca(OH)2MgCO3CaCO32H20
  • IIIb MgCO3Ca(OH)2Mg(OH)22CaCO3
  • III Mg(HCO3)22Ca(OH)2Mg(OH)22CaCO32H20 2
  • IV CaCl2Na2CO3CaCO3 2NaCl 1
  • Va MgCl2Na2CO3MgCO3 2NaCl
  • Vb MgCO3Ca(OH)2Mg(OH)22CaCO3
  • V MgCl2Ca(OH)2Na2CO3CaCO3 Mg(OH)2 2NaCl
    1 1

needed Ca(OH)2 in meq needed Na2CO3 in meq
II, III carbonate hardness reactions IV, V non
carbonate hardness reaction
63
Lime soda process
II
V
I
Lime needed CO2 HCO3- Mg2 Soda needed
Ca2 - HCO3- Mg2
HCO3-
CO2
I
IV
V
Ca2
Mg2
CO2
HCO3-
II
Mg2
Ca2
Lime needed CO2 HCO3- 2Mg2
I
II
III
64
Sodium hydroxide-soda process
  • Advantages
  • Dosage of NaOH solutions is very simple
  • By using NaOH the amount of sludge is much less
    than with Ca(OH)2 as the precipitating agent)

65
NaOH process
  • I CO22 NaOH?Na2CO3H20 1
  • II Ca(HCO3)2 2NaOH CaCO3Na2CO32H20
    1
  • IIIa Mg(HCO3)2 2NaOH MgCO3Na2CO32H20
  • IIIb MgCO3 2NaOH Mg(OH)2Na2CO3
  • III Mg(HCO3)2 4NaOH Mg(OH)22Na2CO32H20
    2
  • IV CaCl2Na2CO3CaCO3 2NaCl 1
  • V MgCl2 2NaOH NaCl Mg(OH)2 1

needed Ca(OH)2 in meq needed Na2CO3 in meq
II, III carbonate hardness reactions IV, V non
carbonate hardness reaction
66
NaOH process
I
II
V
NaOH needed CO2 HCO3- Mg2 Soda needed
(Ca2 - HCO3- ) (CO2 HCO3-)
Ca2 - CO2 - 2HCO3-
HCO3-
CO2
I
I, II
IV
Ca2
Mg2
CO2
HCO3-
II
Mg2
Ca2
NaOH needed CO2 HCO3- 2Mg2
I
II
III
67
  • CaSO4Na2CO3CaCO3 Na2SO4
  • CaCl2Na2CO3CaCO3 2NaCl
  • MgSO4Ca(OH)2CaSO4 Mg(OH)2
  • MgCl2Ca(OH)2 Mg(OH)2 CaCl2

68
  • Diketahui air mengandung ion
  • Cl142 mg/l,
  • HCO3-183 mg/l
  • Ca 120 mg/l
  • Mg36 mg/l
  • CO2 terlarut 66 mg/l
  • Harga bahan kimia
  • Na2CO3 Rp. 4500/kg
  • NaOH 4000/kg
  • Ca(OH) 2500/kg

69
  1. Hitung tingkat kesadahan yang dapat dicapai
    dengan metode pengendapan yang paling murah.
    Jawaban didasarkan atas perhitungan dan
    reaksi-reaksi
  2. Hitunglah tingkat kesadahan yang dapat dicapai
    dalam proses pelunakan menggunakan Ca(OH)2 jika
    diketahui bahan proses ini memerlukan kelebihan
    dosis Ca(OH)2 sebanyak 18,5 mg/l
  3. Idem soal 2 menggunakan NaOH jika diperlukan
    kelebihan dosis NaOH sebesar 16 mg/l

70
  • Cl-142 mg/l 142/35.5 4 meq/l
  • HCO3-183 mg/l 183/61 3 meq/l
  • Ca2 120 mg/l 120x2/406 meq/l
  • Mg2 36 mg/l 36x2/24 3 meq/l
  • CO2 66 mg/l 66x2/44 3 meq/l
  • Ca2 Mg2 gt HCO3- ? bukan hanya kesadahan
    sementara
  • Kesadahan total 9 meq/l
  • Kesadahan sementara 3 meq/l
  • Kesadahan tetap 6 meq/l

71
  • Total Ca(OH)2 yang dibutuhkan
  • 33318,5 350 mg/l
  • Naik 350/333 1,05
  • Ksp CaCO3 lt? Ca2 CO3
  • pada suhu tertentu adalah 0,3 meq/l
  • Ca2CO3/CaCO3
  • dengan memperhatikan
  • Ca(OH)2 Ca2 OH-
  • 350 350
  • ---- mmol/l ----- mmol/l
  • 74 74
  • Dengan kenaikan 1,05 pada ion Ca
  • maka Ksp ? 0,3 x 1,05 0,315 meq/l
  • Mg(OH)2 Mg2 OH-
  • Ksp 0,24 meq/l

72
  • 1 D 10 mg/L CaCO3 10/(401248)2
  • 0,2 meq/L CaCO3
  • Ca(OH)2 Ca2 2OH-
  • 18,5 mg
  • 18,5 x 2
  • --------- 0,5 meq/L
  • 4034
  • Tingkat kesadahan 0,5/0,2 2,5 D
  • NaOH Na OH-
  • 16 mg
  • 16/40
  • 0,4 meq
  • Kesadahan 0,4/0,2 2 D

73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com