Title: Presentazione di PowerPoint
1Cold Melting of Solid Electron Phases in Quantum
Dots
M. Rontani, G. Goldoni INFM-S3, Modena, Italy
2Why quantum dots?
3Energy scales in artificial atoms
experimental control N, density, De
De / e2/(le)
4Tuning electron phases à la Wigner
H T V
kinetic energy
e-e interaction
low
density n high B
field
T quenched
rs l / aB
n 1 / pl2
2DEG
l lQD / aB
QD
5Open questions in correlated regimes
2D spin-polarized phase? disorder favors crystal
ferromagnet
0D crystallization? spin polarization? melting?
crystal
liquid
Tanatar and Ceperley 1989
controversy for N 6
QMC R. Egger et al., PRL 82, 3320 (1999)
CI S. M. Reimann et al., PRB 62, 8108 (2000)
6Configuration interaction
envelope function approximation,
semiconductor effective parameters
second quantization formalism
1) Compute H parameters from the chosen
single-particle basis
2) Compute the wavefunction as a superposition of
Slater determinants
7Monitoring crystallization
example N 5
total density
l 2
conditional probability
l 10
l 2
l 10
Rontani et al., Computer Phys. Commun. 2005
8Classical geometrical phases
conditional probability
- crystallization around l 4 (agreement with
QMC) - N 6 ?
9No spin polarization!
N 6
- single-particle basis 36 orbitals
- maximum linear matrix size 1.1 106 for S 1
- about 600 hours of CPU time on IBM-SP4 with 40
CPUs, for each value of l and M
10Fine structure of transition
l 3.5
l 2
l 6
N 6
conditional probability
fixed electron
11Normal modes at low density
12Monitoring crystallization
l 2
13Monitoring crystallization
l 2.5
14Monitoring crystallization
l 3
15Monitoring crystallization
l 3.5
16Monitoring crystallization
l 4
17Monitoring crystallization
l 5
18Monitoring crystallization
l 6
19The six-electron double-dot system
Numerical results
top view
top-dot electron
bottom-dot electron
phase I
phase II
phase III
Rontani et al., EPL 2002
20Cold melting
I and III classical configurations
same dot
different dots
II novel quantum phase,
liquid-like
Rontani et al., EPL 2002
I
III
(rad)
21Conclusion
phase diagram of low-density quantum
dots spin-unpolarized N 6 ground
state classically metastable phase close to
melting
How to measure?
inelastic light scattering
EPL 58, 555 (2002)
cond-mat/0506143 tunneling spectroscopies
cond-mat/0408454
FIRB, COFIN-2003, MAE, INFM I.T. Calcolo Parallelo
http//www.s3.infm.it