Title: BIBLIOGRAFIA
1BIBLIOGRAFIA
- Bernard J. Hamrock, Elementos de máquinas. Ed. Mc
Graw Hill. - Robert L. Norton, Diseño de máquinas. Ed.
Prentice Hall. - Shigley, Diseño en Ingeniería Mecánica, Ed. Mc
Graw-Hill
2Load, Stress and Strain
When I am working on a problem, I never
think about beauty. I only think of how to solve
the problem. But when I have finished, if the
solution is not beautiful, I know it is
wrong. Richard Buckminster Fuller
Image A dragline lifts a large load in a mining
operation.
3A Simple Crane
Figure 2.1 A simple crane and forces acting on
it. (a) Assembly drawing (b) free-body diagram
of forces acting on the beam.
text reference Figure 2.1, page 30
4Supports and Reactions
Table 2.1 Four types of support with their
corresponding reactions.
text reference Table 2.1, page 35
5Ladder Free Body Diagram
Figure 2.5 Ladder having contact with the house
and the ground while having a painter on the
ladder. Used in Example 2.4. The ladder length
is l.
text reference Figure 2.5, page 36
6Load Classification
Figure 2.2 Load classified as to location and
method of application. (a) Normal, tensile (b)
normal, compressive (c) shear (d) bending
(e) torsion (f) combined
text reference Figure 2.2, page 31
7Sign Convention
Figure 2.3 Sign convention used in bending. (a)
y coordinate upward (b) y coordinate downward.
text reference Figure 2.3, page 32
8Lever Assembly
Figure 2.4 Lever assembly and results. (a) Lever
assembly (b) results showning (1) normal,
tensile, (2) shear, (3) bending, (4) torsion on
section B of lever assembly.
text reference Figure 2.4, page 33
9Beam Supports
Figure 2.8 Three types of beam support. (a)
Simply supported (b) cantilevered (c)
overhanging.
text reference Figure 2.8, page 39
10Simply Supported Bar
Figure 2.9 Simply supported bar with (a)
midlength load and reactions (b) free-body
diagram for 0ltxltl/2 (c) free body diagram for
l/2ltxltl (d) shear and bending moment diagrams.
text reference Figure 2.9, page 40
11Singularity Functions (Part 1)
Table 2.2 Six singularity and load intensity
functions with corresponding graphs and
expressions.
text reference Table 2.2, page 43
12Singularity Functions (Part 2)
Table 2.2 Six singularity and load intensity
functions with corresponding graphs and
expressions.
text reference Table 2.2, page 43
13Shear and Moment Diagrams
Figure 2.10 (a) Shear and (b) moment diagrams
for Example 2.8.
text reference Figure 2.10, page 44
14Example 2.10
Ø6mm
?25mm
Ø10mm
Figure 2.12 Figures used in Example 2.10. (a)
Load assembly drawing (b) free-body diagram.
text reference Figure 2.12, page 48
15Example
Se desea transmitir una potencia de 40 CV a
través de un eje que gira a 1500 rpm mediante una
chaveta de profundidad máxima 6 mmy L 12
mm. Datos eje macizo de Øext45.
16Example
40 CV a 1500 rpm H/2 6 mmy L 12 mm.Datos eje
macizo de Øext45.
Determinación de cargas
Determinación de esfuerzos
Aplicación Criterio de Fallo
Determinación del coeficiente de seguridad para
un material, en este caso AISI1040 615/380
17General State of Stress
Figure 2.13 Stress element showing general state
of three-dimensional stress with origin placed in
center of element.
text reference Figure 2.13, page 49
182-D State of Stress
Figure 2.14 Stress element showing
two-dimensional state of stress. (a) Three
dimensional view (b) plane view.
text reference Figure 2.14, page 51
19Equivalent Stresses
Figure 2.15 Illustration of equivalent stresss
states (a) Stress element oriented in the
direction of applied stress. (b) stress element
oriented in different (arbitrary) direction.
text reference Figure 2.15, page 52
20Stresses in Oblique Plane
Figure 2.16 Stresses in oblique plane at angle ?.
text reference Figure 2.16, page 52
21Stresses in Oblique Plane
text reference Shigley pag 28,29
22Mohrs Circle
Figure 2.17 Mohrs circle diagram of Eqs. (2.13)
and (2.14).
text reference Figure 2.17, page 55
23Mohrs Circle Example
Un elemento con el siguiente estado tensional. Se
desea a) hallar los esfuerzos y las direcciones
principales e indicar en el elemento su
orientación correcta, con respecto al sistema xy.
Se trazará otro elemento en que se muestren T1 y
T2, determinando los esfuerzos normales
correspondientes y marcando los signos letras.
text reference Shigley, page 31-32
24Results from Example
Figure 2.18 Results from Example 2.13 (a)
Mohrs circle diagram (b) stress element for
principal normal stresses shown in x-y
coordinates (c) stress element for principal
stresses shown in x-y coordinates.
text reference Figure 2.18, page 57
25Mohrs Circle for Triaxial Stress State
Figure 2.19 Mohrs circle for triaxial stress
state. (a) Mohrs circle representation (b)
principal stresses on two planes.
text reference Figure 2.19, page 59
26Example 3.5
Figure 2.20 Mohrs circle diagram for Example
3.5. (a) Triaxial stress state when ?123.43
ksi, ?24.57 ksi, and ?30 (b) biaxial stress
state when ?130.76 ksi and ?2-2.760 ksi (c)
triaxial stress state when ?130.76 ksi, ?20,
and ?3-2.76 ksi.
text reference Figure 2.20, page 60
27Stresses on Octahedral Planes
Figure 2.21 Stresses acting on octahedral
planes. (a) General state of stress. (b) normal
stress (c) octahedral shear stress.
text reference Figure 2.21, page 61
28Normal Strain
Figure 2.22 Normal strain of cubic element
subjected to uniform tension in x direction. (a)
Three dimensional view (b) two-dimensional (or
plane) view.
text reference Figure 2.21, page 64
29Shear Strain
Figure 2.23 Shear strain of cubic element
subjected to shear stress. (a) Three dimensional
view (b) two-dimensional (or plane) view.
text reference Figure 2.23, page 65
30Plain Strain
Figure 2.24 Graphical depiction of plane strain
element. (a) Normal strain ?x (b) normal strain
?y and (c) shear strain ?xy.
text reference Figure 2.24, page 66
31Circular Bar with Tensile Load
Figure 4.10 Circular bar with tensile load
applied.
text reference Figure 4.10, page 149
32Example
text reference Figure 2.12, page 48
33Twisting due to Applied Torque
Figure 4.11 Twisting of member due to applied
torque.
Hipotesis de Coulomb secciones transversales
circulares, permanecen planas. Principio de
Saint Venant secciones transversales no
circulares.
text reference Figure 4.11, page 152
34Bending of a Bar
Figure 4.12 Bar made of elastomeric material to
illustrate effect of bending. (a) Undeformed
bar (b) deformed bar.
text reference Figure 4.12, page 156
35Elements in Bending
Figure 4.14 Undeformed and deformed elements in
bending.
text reference Figure 4.14, page 157
36Bending Stress Distribution
Figure 4.15 Profile view of bending stress
variation.
text reference Figure 4.15, page 158
37Las secciones más económicas, serán aquellas que
tengan el mayor módulo resistente wz, con el
menor gasto de material.
Calcular b tal que tengan el mismo valor de Wx?
38Example 4.10
Figure 4.16 U-shaped cross section experiencing
bending moment, used in Example 4.10.
text reference Figure 4.16, page 159
39Curved Member in Bending
text reference Figure 4.17, page 161
40Curved Member in Bending
Condición sumatorio de esfuerzos en el rn0
41Curved Member in Bending
42Cross Section of Curved Member
Figure 4.18 Rectangular cross section of curved
member.
text reference Figure 4.18, page 162
43Example Cross Section of Curved Member
- Una sección transversal rectangular de un
elemento curvo, tiene las dimensiones - b 1 y hr0-ri3, sometida a un momento de
flexión puro de 20000lbf-pulg. - Hallar
- Elemento recto.
- Elemento curvo. r15.
- Elemento curvo. r3.
text reference Figure 4.18, page 162
44Tabla de Ganchos
45Example Cross Section of Curved Member
- Una sección trapezoidal de un elemento curvo,
tiene las dimensiones - ri10 cm
- F 125 kg
- Tadm1380 Kg/cm2
- Hallar valor de a.
text reference Figure 4.18, page 162
46Development of Transverse Shear
Figure 4.19 How transverse shear is developed.
text reference Figure 4.19, page 165
47Maximum Shear Stress
Table 4.3 Maximum shear stress for different
beam cross sections.
text reference Table 4.3, page 168