Title: Veranstaltung Internet und WWW
1Veranstaltung Internet und WWW
IP, Routing, DNS, Client/Server Prof. Dr. A.
Fischer, 15.12.2004
2ARP -- Remote Host Example (continued)
- The default gateway configuration instructs A
that ALL remote hosts are reachable via the
next-hop gateway R1. - Host A will ARP for R1s local interface, NOT
Host B.
3Summary of IP Host Communication
- The primary steps for all IP host communications
- Route determination
- Address resolution
- Remote destinations require a next-hop gateway
lookup to find a router to reach the remote
network or subnet. - ARP requests are MAC layer broadcasts and
therefore are not forwarded by routers (the
router responds to the ARP request). - Proxy ARP can be used to minimize the router
knowledge required by IP hosts.
4Hop-by-Hop-Routing
5Static Routing
- All routing information is pre-computed and
provided through manual configuration. - Routing information must be recomputed and
provided to the routers each time the network
topology changes. - Disadvantage Not well suited to large, dynamic
internets that may experience constant
topological changes.
6Distributed-Adaptive Routing
- Distributed-adaptive routing is more practical
than static routing in a large, dynamic
environment. - With distributed-adaptive routing
- Routers use a common algorithm or a common set of
rules for determining the best path. - Routers dynamically sense their local
environments and exchange this information
amongst themselves in a distributed fashion. - A system of routers participates in a distributed
algorithm to determine the optimal route between
end-stations in an internet. - Two forms of distributed-adaptive routing are in
common use - Link State (Example OSPF)
- Distance Vector (Example RIP)
7Link-State Routing
- Link-state routing protocols (also called
shortest-path-first protocols) require each
router to maintain at least a partial map of the
network. - When a network link changes state (up to down, or
vice versa), a notification, called a link-state
advertisement (LSA) is flooded throughout the
network. All the routers note the change and
recompute their routes accordingly. - Routers know more about the internetwork using
link-state routing, than when using any
distance-vector routing protocol. - Link-state routing is more reliable, easier to
debug, and less bandwidth-intensive than
distance-vector routing. - Link-state routing is also more complex and more
compute- and memory-intensive. - OSPF is link-state routing protocols.
8Distance-Vector Routing
- Distance-vector routing finds the best path to a
remote network by judging distance. - Each time a packet goes through a router, its
called a hop. The route with the least number of
hops to the network is determined to be the best
route. - Distance-vector routing requires that each router
maintain information about the distance from
itself to each possible destination. - The term distance-vector comes from the
information in the periodic update messages sent
between routers. - Each router in the internet learns about the
network topology by exchanging routing
information packets with its neighbor routers. - When a router receives a routing information
packet from a neighbor, it updates its routing
table if - The update contains routing information for a
destination not known previously. - The update contains a shorter route to a known
destination. - The receiving router is routing to a destination
via the originator, and the update contains a
distance change to that destination.
9More on Distance-Vector Routing
- Limitations
- Slow convergence due to the update period
(impedes scalability). - The formation of router loops can occur.
- Computational complexity of the algorithm grows
rapidly as the internet grows in size. - Advantages
- Simple to design
- Simple to use
- Examples of distance-vector routing protocols
- Routing Information Protocol (RIP)
- Interior Gateway Routing Protocol (IGRP)
10Routing Information Protocol (RIP)
- RIP is one form of distance-vector routing.
- Routing decision is based on hop count.
- Each router is one hop.
- RIP has a 15 hop-count limitation.
- RIP does not consider distance or bandwidth
capacity. - RIP updates occur every 30 seconds and contain
the entire routing table contents. - As the network size increases, convergence time
increases, as does overhead (table sizes
increase). - Two versions of RIP
- RIP version 1, defined by RFC 1058 (STD 34) 6/88
- RIP version 2, defined by RFC 2453 (STD 56) 8/99
11Example of Distance-Vector RoutingPrior to
information exchange
- Prior to the exchange of routing information,
routers are only aware of directly-connected
networks.
12Example of Distance-Vector RoutingAfter first
information exchange
- The first exchange of routing information results
in the additions to the routing tables shown
below the line in the diagram.
Net Metric Via
Net Metric Via
Net Metric Via
Net Metric Via
1 0 DC 2 0 DC 3 1
B
2 0 DC 3 0 DC 1 1
A 4 1 C
3 0 DC 4 0 DC 2 1
B 5 1 D
4 0 DC 5 0 DC 3 1
C
30 sec
13Example of Distance-Vector RoutingNext periodic
update
- The next periodic update results in the changes
below. Note A and D still do not have complete
knowledge of the topology.
Net Metric Via
Net Metric Via
Net Metric Via
Net Metric Via
1 0 DC 2 0 DC 3 1
B 4 2 B
2 0 DC 3 0 DC 1 1
A 4 1 C 5 2 C
3 0 DC 4 0 DC 2 1
B 5 1 D 1 2 B
4 0 DC 5 0 DC 3 1
C 2 2 C
30 sec
60 sec
14Example of Distance-Vector RoutingThird iteration
- In this example, it took three iterations and 90
seconds for this network to converge.
Net Metric Via
Net Metric Via
Net Metric Via
Net Metric Via
1 0 DC 2 0 DC 3 1
B 4 2 B 5 3 B
2 0 DC 3 0 DC 1 1
A 4 1 C 5 2 C
3 0 DC 4 0 DC 2 1
B 5 1 D 1 2 B
4 0 DC 5 0 DC 3 1
C 2 2 C 1 3 C
30 sec
60 sec
90 sec
15Populating the Route Table
- Route Sources
- Routes are delivered to the RIB from a variety of
different sources. - The RIB does not pass routes back to the sources
- Based on the routes it receives, it decides which
routes to forward to the Route Table - This decision is based on Preference
- Autonomous System Boundary Router (ASBR)
- Adds external routes to OSPF
- Called OSPF-ASE routes
16Private IP-Adressen
17TCP Transmission Control Protocol
- Nutzt IP
- Stellt sicher, dass Daten
- korrekt
- in der richtigen Reihenfolgen übertragen werden
- Verbindungsorientiert
- Zuverlässig
-
18Sockets und Ports
- Daten, die an einer IP-Adresse ankommen, müssen
an das richtige Transportprotokoll und dann an
die richtige Anwendung übertragen werden. - IP nutzt Protokollnummern zur Identifikation der
Transportprotokolle (z. B. TCP 6) - TCP benutzt Ports zur Definition der
Anwendungsprotokolle / Anwendungen - Well known ports
- Dynamically allocated ports
-
19Well known ports
- 1 TCP Port Service Multiplexer (TCPMUX)
- 5 Remote Job Entry (RJE)
- 7 ECHO
- 18 Message Send Protocol (MSP)
- 20 FTP -- Data
- 21 FTP -- Control
- 22 SSH Remote Login Protocol
- 23 Telnet
- 25 Simple Mail Transfer Protocol (SMTP)
- 29 MSG ICP
- 37 Time
- 42 Host Name Server (Nameserv)
- 43 WhoIs
- 49 Login Host Protocol (Login)
- 53 Domain Name System (DNS)
- 69 Trivial File Transfer Protocol (TFTP)
- 70 Gopher Services
- 79 Finger
- 80 HTTP
- 137 NetBIOS Name Service
- 139 NetBIOS Datagram Service
- 143 Interim Mail Access Protocol (IMAP)
- 150 NetBIOS Session Service
- 156 SQL Server
- 161 SNMP
- 179 Border Gateway Protocol (BGP)
- 190 Gateway Access Control Protocol (GACP)
- 194 Internet Relay Chat (IRC)
- 197 Directory Location Service (DLS)
- 389 Lightweight Directory Access Protocol (LDAP)
- 396 Novell Netware over IP
- 443 HTTPS
- 444 Simple Network Paging Protocol (SNPP)
- 445 Microsoft-DS
- 458 Apple QuickTime
- 546 DHCP Client
- 547 DHCP Server
- 563 SNEWS
20IPv6
- 128 bit IP-Adressen
- 00000000000032100123456789ABCDEF
- 32100123456789ABCDEF
- Vereinfachte Struktur des Headers.
- Verkettete Header für den Transport von Optionen.
- Optionen für Verschlüsselung und Authentisierung
auf IP-Ebene. - Neue Klassifizierung von Datenströmen (Flows) für
einen optimierten Transport von Audio- und
Video-Daten. - Vereinfachung der manuellen Konfiguration.
- Verbesserung der Flusskontrolle und der Erkennung
von Engpässen. - Spezielle Mechanismen zur Entdeckung und
Überwachung von Nachbarn beim Einsatz auf Routern
21Domain Name Service (DNS)
- IP-Adressen ? ? Rechnernamen
- Weltweites verteiltes System
- Baumförmige Struktur
- Je Domain
- Primary name server
- Secondary name server
22Rekursive Anfragen
23Domain Name Service (DNS)
24Client/Server
Request
Reply
25Client/Server Beispiel E-Mail
Aufbau einer Mailnachricht
26Client/Server Beispiel E-Mail
Beispielschlüsselwörter einer Mailnachricht
27Client/Server Beispiel E-Mail
- MIME-Standard
- Ursprünglich nur für ASCII-Text
- Möglichkeit Binärdaten zu versenden (Als
Hexzahlen) - MIME Multipurpose Internet Mail Exchange
- z.B. im Mailkopf
- MIME-Version 1.0Content-Type Multipart/Mixed
BoundaryMime_separator - und vor jedem Teil der E-Mail-Nachricht der
passende Separator - z.B.Content-Type text/plain
- Damit sehr flexibel!
28Client/Server Beispiel E-Mail
Mail Transport
29Client/Server Beispiel E-Mail
- Mail Transport
- mit SMTP (Simple Mail Transport Protocol) wird
die Mail transportiert - Store-and-Forward-Konzept
30Client/Server Beispiel E-Mail
- Mail-Exploder, Listen und Forwarder
- Maillisten erlauben Mailtransport an Gruppen
- Der Exploder überprüft Empfangsmail in seiner
Datenbank und Forwarded Kopien der Mail an viele
Empfänger (Wieviele bei Freunde_at_wit.com?)
31Client/Server Beispiel E-Mail
- Mail-Gateways/Mail-Relay
- Mail-Gateway Exploder und Mailtransfer-Programm
auf einem Rechner - Der Exploder überprüft Empfangsmail in seiner
Datenbank und Forwarded Kopien der Mail an viele
Empfänger (Wieviele bei Freunde_at_wit.com?)
32Client/Server Beispiel E-Mail
- Mail-Listenmanager
- Abarbeiten von Routinearbeiten automatische
Pflege von Maillistenadd ltmailboxgt to
ltlistgt(oder subscribe und unsubscripe, usw.) - Oder Vereinheitlichen von Mailadressen
- Menzelk_at_fh-brandenburg.de und fischer_at_fh-brandenbu
rg.de sind gültige Email-Adressen. Diese kommen
beim Mail-Gateway an und werden vom Exploder
unterschiedlich an deren Mailbox weitergeleitet
z.B. menzelk_at_zeus.fh-brandenburg.de und
fischer_at_wotan.fh-brandenburg.de - gt Datenbank für Mailbox-Identifizierer im
Mail-Gateway.
33Client/Server Beispiel E-Mail
- Zugang zur Mailbox
- Eigenes Protokoll für den Zugang zur Mailbox
Post Office Protocol (POP)