Title: Cantor and Sierpinski,
1Cantor and Sierpinski,
Julia and Fatou
Crazy Topology in Complex Dynamics
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6Cantor and Sierpinski,
Julia and Fatou
Crazy Topology in Complex Dynamics
Theorem
7Cantor and Sierpinski,
Julia and Fatou
Crazy Topology in Complex Dynamics
Theorem Planar topologists are crazy!
8Cantor and Sierpinski,
Julia and Fatou
Crazy Topology in Complex Dynamics
Theorem Planar topologists are crazy!
Proof Should be clear by the end.....
9Three examples
Cantor bouquets
Indecomposable continua
Sierpinski curves
10Three examples
Cantor bouquets
Indecomposable continua
Sierpinski curves
These arise as Julia sets for
11Example 1 Cantor Bouquets
with Clara Bodelon Michael Hayes Gareth
Roberts Ranjit Bhattacharjee Lee DeVille Monica
Moreno Rocha Kreso Josic Alex Frumosu Eileen Lee
12Orbit of z
Question What is the fate of orbits?
13Julia set of
J closure of orbits that escape to
closure repelling periodic orbits
chaotic set
Fatou set
complement of J
predictable set
14Example 1
is a Cantor bouquet
15Example 1
is a Cantor bouquet
16Example 1
is a Cantor bouquet
attracting fixed point
q
17Example 1
is a Cantor bouquet
q
p
repelling fixed point
18Example 1
is a Cantor bouquet
q
p
x0
19So where is J?
20So where is J?
21So where is J?
Green points lie in the Fatou set
22So where is J?
Green points lie in the Fatou set
23So where is J?
Green points lie in the Fatou set
24So where is J?
Green points lie in the Fatou set
25So where is J?
Green points lie in the Fatou set
26The Julia set is a collection of curves (hairs)
in the right half plane, each with an
endpoint and a stem.
hairs
endpoints
stems
27A Cantor bouquet
q
p
28Colored points escape to and so are in the
Julia set.
q
p
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33One such hair lies on the real axis.
repelling fixed point
stem
34Orbits of points on the stems all tend to .
hairs
35So bounded orbits lie in the set of endpoints.
hairs
36So bounded orbits lie in the set of endpoints.
Repelling cycles lie in the set of endpoints.
hairs
37So bounded orbits lie in the set of endpoints.
Repelling cycles lie in the set of endpoints.
hairs
So the endpoints are dense in the bouquet.
38So bounded orbits lie in the set of endpoints.
Repelling cycles lie in the set of endpoints.
hairs
So the endpoints are dense in the bouquet.
39S
Some Facts
40S
Some Facts
The only accessible points in J from the Fatou
set are the endpoints you cannot touch the stems
41S
Some Crazy Facts
The only accessible points in J from the Fatou
set are the endpoints you cannot touch the stems
The set of endpoints is totally disconnected...
42S
Some Crazy Facts
The only accessible points in J from the Fatou
set are the endpoints you cannot touch the stems
The set of endpoints is totally disconnected...
but the endpoints together with the point at
infinity is connected (Mayer)
43S
Some Crazy Facts
The only accessible points in J from the Fatou
set are the endpoints you cannot touch the stems
The set of endpoints is totally disconnected...
but the endpoints together with the point at
infinity is connected (Mayer)
Hausdorff dimension of stems 1...
44S
Some Crazy Facts
The only accessible points in J from the Fatou
set are the endpoints you cannot touch the stems
The set of endpoints is totally disconnected...
but the endpoints together with the point at
infinity is connected (Mayer)
Hausdorff dimension of stems 1...
but the Hausdorff dimension of endpoints
2! (Karpinska)
45Example 2 Indecomposable Continua
with Nuria Fagella Xavier Jarque Monica Moreno
Rocha
46When
,
undergoes a saddle node bifurcation,
but much more happens...
47As increases through 1/e,
explodes.
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94(No Transcript)
95(No Transcript)
96(No Transcript)
97(No Transcript)
98(No Transcript)
99(No Transcript)
100(No Transcript)
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110(No Transcript)
111(No Transcript)
112(No Transcript)
113(No Transcript)
114(No Transcript)
115(No Transcript)
116(No Transcript)
117(No Transcript)
118(No Transcript)
119(No Transcript)
120(No Transcript)
121(No Transcript)
122(No Transcript)
123(No Transcript)
124(No Transcript)
125(No Transcript)
126(No Transcript)
127(No Transcript)
128(No Transcript)
129(No Transcript)
130(No Transcript)
131(No Transcript)
132(No Transcript)
133(No Transcript)
134(No Transcript)
135(No Transcript)
136(No Transcript)
137(No Transcript)
138(No Transcript)
139(No Transcript)
140(No Transcript)
141(No Transcript)
142(No Transcript)
143(No Transcript)
144(No Transcript)
145(No Transcript)
146(No Transcript)
147(No Transcript)
148(No Transcript)
149(No Transcript)
150(No Transcript)
151(No Transcript)
152(No Transcript)
153(No Transcript)
154(No Transcript)
155(No Transcript)
156(No Transcript)
157(No Transcript)
158(No Transcript)
159(No Transcript)
160(No Transcript)
161(No Transcript)
162(No Transcript)
163(No Transcript)
164(No Transcript)
165(No Transcript)
166(No Transcript)
167(No Transcript)
168(No Transcript)
169(No Transcript)
170(No Transcript)
171(No Transcript)
172(No Transcript)
173(No Transcript)
174(No Transcript)
175(No Transcript)
176(No Transcript)
177(No Transcript)
178(No Transcript)
179(No Transcript)
180(No Transcript)
181(No Transcript)
182(No Transcript)
183(No Transcript)
184(No Transcript)
185(No Transcript)
186(No Transcript)
187(No Transcript)
188(No Transcript)
189(No Transcript)
190(No Transcript)
191(No Transcript)
192(No Transcript)
193(No Transcript)
194(No Transcript)
195(No Transcript)
196(No Transcript)
197(No Transcript)
198(No Transcript)
199(No Transcript)
200(No Transcript)
201(No Transcript)
202(No Transcript)
203(No Transcript)
204(No Transcript)
205(No Transcript)
206(No Transcript)
207(No Transcript)
208(No Transcript)
209(No Transcript)
210(No Transcript)
211(No Transcript)
212(No Transcript)
213(No Transcript)
214(No Transcript)
215(No Transcript)
216(No Transcript)
217(No Transcript)
218(No Transcript)
219(No Transcript)
220(No Transcript)
221(No Transcript)
222(No Transcript)
223(No Transcript)
224(No Transcript)
225(No Transcript)
226(No Transcript)
227(No Transcript)
228(No Transcript)
229(No Transcript)
230(No Transcript)
231(No Transcript)
232(No Transcript)
233(No Transcript)
234(No Transcript)
235(No Transcript)
236(No Transcript)
237(No Transcript)
238(No Transcript)
239(No Transcript)
240(No Transcript)
241(No Transcript)
242(No Transcript)
243(No Transcript)
244(No Transcript)
245(No Transcript)
246(No Transcript)
247(No Transcript)
248(No Transcript)
249(No Transcript)
250(No Transcript)
251(No Transcript)
252(No Transcript)
253(No Transcript)
254(No Transcript)
255(No Transcript)
256(No Transcript)
257(No Transcript)
258(No Transcript)
259(No Transcript)
260(No Transcript)
261(No Transcript)
262(No Transcript)
263(No Transcript)
264(No Transcript)
265(No Transcript)
266(No Transcript)
267(No Transcript)
268(No Transcript)
269(No Transcript)
270(No Transcript)
271(No Transcript)
272(Sullivan, Goldberg, Keen)
273As
increases through
,
however
274As
increases through
,
however
No new periodic cycles are born
275As
increases through
,
however
No new periodic cycles are born
All move continuously to fill in the plane
276As
increases through
,
however
No new periodic cycles are born
All move continuously to fill in the plane
Infinitely many hairs suddenly become
indecomposable continua.
277An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
For example
278An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
For example indecomposable?
0
1
279An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
No, decomposable.
For example
0
1
(subsets need not be disjoint)
280An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
For example indecomposable?
281An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
No, decomposable.
For example
282An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
For example indecomposable?
283An indecomposable continuum is a compact,
connected set that cannot be broken into the
union of two (proper) compact, connected subsets.
No, decomposable.
For example
284Knaster continuum
A well known example of an indecomposable
continuum
Start with the Cantor middle-thirds set
285Knaster continuum
Connect symmetric points about 1/2 with
semicircles
286Knaster continuum
Do the same below about 5/6
287Knaster continuum
And continue....
288Knaster continuum
289Properties of K
There is one curve that passes through all
the endpoints of the Cantor set.
290Properties of K
There is one curve that passes through all
the endpoints of the Cantor set.
It accumulates everywhere on itself and on K.
291Properties of K
There is one curve that passes through all
the endpoints of the Cantor set.
It accumulates everywhere on itself and on K.
And is the only piece of K that is
accessible from the outside.
292Properties of K
There is one curve that passes through all
the endpoints of the Cantor set.
It accumulates everywhere on itself and on K.
And is the only piece of K that is
accessible from the outside.
But there are infinitely many other curves
in K, each of which is dense in K.
293Properties of K
There is one curve that passes through all
the endpoints of the Cantor set.
It accumulates everywhere on itself and on K.
And is the only piece of K that is
accessible from the outside.
But there are infinitely many other curves
in K, each of which is dense in K.
So K is compact, connected, and....
294Indecomposable!
Try to write K as the union of two compact,
connected sets.
295Indecomposable!
Cant divide it this way.... subsets are
closed but not connected.
296Indecomposable!
Or this way... again closed but not
connected.
297Indecomposable!
Or the union of the outer curve and all the
inaccessible curves ... not closed.
298How the hairs become indecomposable
repelling fixed pt
.
.
.
.
... .
.
.
.
.
attracting fixed pt
stem
299How the hairs become indecomposable
.
.
.
.
... .
.
.
.
.
.
.
.
.
.
2 repelling fixed points
.
.
.
.
.
.
.
Now all points in R escape, so the hair is much
longer
.
.
.
.
300But the hair is even longer!
0
301But the hair is even longer!
0
302But the hair is even longer! And longer.
0
303But the hair is even longer! And longer...
0
304But the hair is even longer! And longer.......
0
305But the hair is even longer! And
longer.............
0
306Compactify to get a single curve in a compact
region in the plane that accumulates everywhere
on itself. The closure is then an indecomposable
continuum.
0
307The dynamics on this continuum is very simple
one repelling fixed point
all other orbits either tend to
or accumulate on the orbit of 0 and
But the topology is not at all understood Conject
ure the continuum for each parameter is
topologically distinct.
sin(z)
Sierpinski
308A pair of Cantor bouquets
Julia set of sin(z)
309A pair of Cantor bouquets
Unlike the exponential bouquets (which have
measure 0), these have infinite Lebesgue
measure, though they are homeomorphic to the
exponential bouquets.
Julia set of sin(z)
310 sin(z)
311 sin(z)
312 sin(z)
313(1.2i) sin(z)
314(1 ci) sin(z)
315(No Transcript)
316(No Transcript)
317(No Transcript)
318(No Transcript)
319(No Transcript)
320(No Transcript)
321(No Transcript)
322(No Transcript)
323(No Transcript)
324(No Transcript)
325(No Transcript)
326(No Transcript)
327(No Transcript)
328(No Transcript)
329(No Transcript)
330(No Transcript)
331(No Transcript)
332(No Transcript)
333(No Transcript)
334(No Transcript)
335(No Transcript)
336(No Transcript)
337(No Transcript)
338(No Transcript)
339(No Transcript)
340(No Transcript)
341(No Transcript)
342(No Transcript)
343(No Transcript)
344(No Transcript)
345(No Transcript)
346(No Transcript)
347(No Transcript)
348(No Transcript)
349(No Transcript)
350(No Transcript)
351(No Transcript)
352(No Transcript)
353(No Transcript)
354(No Transcript)
355(No Transcript)
356(No Transcript)
357(No Transcript)
358(No Transcript)
359(No Transcript)
360(No Transcript)
361(No Transcript)
362(No Transcript)
363(No Transcript)
364(No Transcript)
365(No Transcript)
366(No Transcript)
367(No Transcript)
368(No Transcript)
369(No Transcript)
370(No Transcript)
371(No Transcript)
372(No Transcript)
373(No Transcript)
374(No Transcript)
375(No Transcript)
376(No Transcript)
377(No Transcript)
378(No Transcript)
379(No Transcript)
380(No Transcript)
381(No Transcript)
382(No Transcript)
383(No Transcript)
384(No Transcript)
385(No Transcript)
386(No Transcript)
387(No Transcript)
388(No Transcript)
389(No Transcript)
390(No Transcript)
391(No Transcript)
392(No Transcript)
393(No Transcript)
394(No Transcript)
395(No Transcript)
396(No Transcript)
397(No Transcript)
398(No Transcript)
399(No Transcript)
400(No Transcript)
401(No Transcript)
402(No Transcript)
403(No Transcript)
404(No Transcript)
405(No Transcript)
406(No Transcript)
407(No Transcript)
408(No Transcript)
409(No Transcript)
410(No Transcript)
411(No Transcript)
412(No Transcript)
413(No Transcript)
414(No Transcript)
415(No Transcript)
416(No Transcript)
417(No Transcript)
418(No Transcript)
419(No Transcript)
420(No Transcript)
421(No Transcript)
422(No Transcript)
423(No Transcript)
424(No Transcript)
425(No Transcript)
426(No Transcript)
427(No Transcript)
428(No Transcript)
429(No Transcript)
430(No Transcript)
431(No Transcript)
432(No Transcript)
433(No Transcript)
434(No Transcript)
435(No Transcript)
436(No Transcript)
437(No Transcript)
438(No Transcript)
439(No Transcript)
440(No Transcript)
441(No Transcript)
442(No Transcript)
443(No Transcript)
444(No Transcript)
445(No Transcript)
446(No Transcript)
447(No Transcript)
448(No Transcript)
449(No Transcript)
450(No Transcript)
451(No Transcript)
452(No Transcript)
453(No Transcript)
454(No Transcript)
455(No Transcript)
456(No Transcript)
457(No Transcript)
458(No Transcript)
459(No Transcript)
460(No Transcript)
461(No Transcript)
462(No Transcript)
463(No Transcript)
464(No Transcript)
465(No Transcript)
466(No Transcript)
467(No Transcript)
468(No Transcript)
469(No Transcript)
470(No Transcript)
471(No Transcript)
472(No Transcript)
473(No Transcript)
474(No Transcript)
475(No Transcript)
476(No Transcript)
477(No Transcript)
478(No Transcript)
479(No Transcript)
480(No Transcript)
481(No Transcript)
482(No Transcript)
483(No Transcript)
484(No Transcript)
485(No Transcript)
486(No Transcript)
487(No Transcript)
488(No Transcript)
489(No Transcript)
490(No Transcript)
491(No Transcript)
492(No Transcript)
493(No Transcript)
494(No Transcript)
495(No Transcript)
496(No Transcript)
497(No Transcript)
498(No Transcript)
499(No Transcript)
500(No Transcript)
501(No Transcript)
502(No Transcript)
503(No Transcript)
504(No Transcript)
505(No Transcript)
506(No Transcript)
507(No Transcript)
508(No Transcript)
509(No Transcript)
510(No Transcript)
511(No Transcript)
512(No Transcript)
513(No Transcript)
514(No Transcript)
515Questions
Do the hairs become indecomposable continua as in
the exponential case?
If so, what is the topology of these sets?
516Example 3 Sierpinski Curves
with
Paul Blanchard Toni Garijo Matt Holzer U.
Hoomiforgot Dan Look Sebastian Marotta Mark
Morabito Monica Moreno Rocha Kevin
Pilgrim Elizabeth Russell Yakov Shapiro David
Uminsky
517Sierpinski Curve
A Sierpinski curve is any planar set that is
homeomorphic to the Sierpinski carpet fractal.
The Sierpinski Carpet
518Topological Characterization
Any planar set that is 1. compact 2.
connected 3. locally connected 4. nowhere
dense 5. any two complementary domains
are bounded by simple closed curves
that are pairwise disjoint is a Sierpinski curve.
The Sierpinski Carpet
519More importantly....
A Sierpinski curve is a universal plane continuum
Any planar, one-dimensional, compact, connected
set can be homeomorphically embedded in a
Sierpinski curve.
For example....
520can be embedded inside
The topologists sine curve
521can be embedded inside
The topologists sine curve
522can be embedded inside
The topologists sine curve
523can be embedded inside
The Knaster continuum
524can be embedded inside
The Knaster continuum
525can be embedded inside
The Knaster continuum
526can be embedded inside
The Knaster continuum
527can be embedded inside
The Knaster continuum
528can be embedded inside
The Knaster continuum
529can be embedded inside
The Knaster continuum
530can be embedded inside
The Knaster continuum
531can be embedded inside
The Knaster continuum
532can be embedded inside
The Knaster continuum
533can be embedded inside
The Knaster continuum
534can be embedded inside
The Knaster continuum
535can be embedded inside
The Knaster continuum
536can be embedded inside
The Knaster continuum
537can be embedded inside
The Knaster continuum
538can be embedded inside
The Knaster continuum
539can be embedded inside
The Knaster continuum
540can be embedded inside
The Knaster continuum
541can be embedded inside
The Knaster continuum
542can be embedded inside
The Knaster continuum
543can be embedded inside
The Knaster continuum
544can be embedded inside
The Knaster continuum
545can be embedded inside
The Knaster continuum
546can be embedded inside
The Knaster continuum
547can be embedded inside
The Knaster continuum
548can be embedded inside
The Knaster continuum
549can be embedded inside
The Knaster continuum
550can be embedded inside
The Knaster continuum
551can be embedded inside
The Knaster continuum
552can be embedded inside
The Knaster continuum
553can be embedded inside
The Knaster continuum
554can be embedded inside
The Knaster continuum
555can be embedded inside
The Knaster continuum
556can be embedded inside
The Knaster continuum
557can be embedded inside
Even this curve
558Some easy to verify facts
559Some easy to verify facts
Have an immediate basin of infinity B
560Some easy to verify facts
Have an immediate basin of infinity B
0 is a pole so have a trap door T (the
preimage of B)
561Some easy to verify facts
Have an immediate basin of infinity B
0 is a pole so have a trap door T (the
preimage of B)
2n critical points given by but really
only one critical orbit due to symmetry
562Some easy to verify facts
Have an immediate basin of infinity B
0 is a pole so have a trap door T (the
preimage of B)
2n critical points given by but really
only one critical orbit due to symmetry
J is now the boundary of the escaping orbits
(not the closure)
563When , the Julia set is the unit circle
564But when , the Julia set explodes
When , the Julia set is the unit circle
A Sierpinski curve
565But when , the Julia set explodes
When , the Julia set is the unit circle
B
T
A Sierpinski curve
566But when , the Julia set explodes
When , the Julia set is the unit circle
Another Sierpinski curve
567But when , the Julia set explodes
When , the Julia set is the unit circle
Also a Sierpinski curve
568Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
569Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
570Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
571Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
572Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
573Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
574Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
575Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
576Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
577Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
578Sierpinski curves arise in lots of different
ways in these families
1. If the critical orbits eventually fall
into the trap door (which is disjoint from
B), then J is a Sierpinski curve.
579Lots of ways this happens
parameter plane when n 3
580Lots of ways this happens
parameter plane when n 3
J is a Sierpinski curve
T
lies in a Sierpinski hole
581Lots of ways this happens
parameter plane when n 3
J is a Sierpinski curve
T
lies in a Sierpinski hole
582Lots of ways this happens
parameter plane when n 3
J is a Sierpinski curve
T
lies in a Sierpinski hole
583Lots of ways this happens
parameter plane when n 3
J is a Sierpinski curve
T
lies in a Sierpinski hole
584Theorem Two maps drawn from the same
Sierpinski hole have the same dynamics, but those
drawn from different holes are not conjugate
(except in very few symmetric cases).
n 4, escape time 4, 24 Sierpinski holes,
585Theorem Two maps drawn from the same
Sierpinski hole have the same dynamics, but those
drawn from different holes are not conjugate
(except in very few symmetric cases).
n 4, escape time 4, 24 Sierpinski holes, but
only five conjugacy classes
586Theorem Two maps drawn from the same
Sierpinski hole have the same dynamics, but those
drawn from different holes are not conjugate
(except in very few symmetric cases).
n 4, escape time 12 402,653,184 Sierpinski
holes, but only 67,108,832 distinct conjugacy
classes
Sorry. I forgot to indicate their locations.
587Sierpinski curves arise in lots of different
ways in these families
2. If the parameter lies in the main cardioid of
a buried baby Mandelbrot set, J is again a
Sierpinski curve.
parameter plane when n 4
588Sierpinski curves arise in lots of different
ways in these families
2. If the parameter lies in the main cardioid of
a buried baby Mandelbrot set, J is again a
Sierpinski curve.
parameter plane when n 4
589Sierpinski curves arise in lots of different
ways in these families
2. If the parameter lies in the main cardioid of
a buried baby Mandelbrot set, J is again a
Sierpinski curve.
parameter plane when n 4
590Sierpinski curves arise in lots of different
ways in these families
2. If the parameter lies in the main cardioid of
a buried baby Mandelbrot set, J is again a
Sierpinski curve.
Black regions are the basin of an attracting
cycle.
591Sierpinski curves arise in lots of different
ways in these families
3. If the parameter lies at a buried point in
the Cantor necklaces in the parameter plane, J
is again a Sierpinski curve.
parameter plane n 4
592Sierpinski curves arise in lots of different
ways in these families
3. If the parameter lies at a buried point in
the Cantor necklaces in the parameter plane, J
is again a Sierpinski curve.
parameter plane n 4
593Sierpinski curves arise in lots of different
ways in these families
3. If the parameter lies at a buried point in
the Cantor necklaces in the parameter plane, J
is again a Sierpinski curve.
parameter plane n 4
594Sierpinski curves arise in lots of different
ways in these families
4. There is a Cantor set of circles in the
parameter plane on which each parameter
corresponds to a Sierpinski curve.
n 3
595Sierpinski curves arise in lots of different
ways in these families
4. There is a Cantor set of circles in the
parameter plane on which each parameter
corresponds to a Sierpinski curve.
n 3
596Sierpinski curves arise in lots of different
ways in these families
4. There is a Cantor set of circles in the
parameter plane on which each parameter
corresponds to a Sierpinski curve.
n 3
597Theorem All these Julia sets are the same
topologically, but they are all (except for
symmetrically located parameters) VERY different
from a dynamics point of view (i.e., the maps are
not conjugate).
Problem Classify the dynamics on
these Sierpinski curve Julia sets.
598Corollary
599Corollary
Yes, those planar
topologists are crazy, but I sure wish I were one
of them!
600Corollary
Yes, those planar
topologists are crazy, but I sure wish I were one
of them!
The End!
601website
math.bu.edu/DYSYS